Yi-Jun Chang, S. Pettie, Thatchaphol Saranurak, Hengjie Zhang
{"title":"基于扩展器分解的近最优分布三角枚举","authors":"Yi-Jun Chang, S. Pettie, Thatchaphol Saranurak, Hengjie Zhang","doi":"10.1145/3446330","DOIUrl":null,"url":null,"abstract":"<jats:p>\n We present improved distributed algorithms for variants of the triangle finding problem in the\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\mathsf {CONGEST}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n model. We show that triangle detection, counting, and enumeration can be solved in\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\tilde{O}(n^{1/3})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n rounds using\n <jats:italic>expander decompositions</jats:italic>\n . This matches the triangle enumeration lower bound of\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\tilde{\\Omega }(n^{1/3})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n by Izumi and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in the\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\mathsf {CONGESTED}\\text{-}\\mathsf {CLIQUE}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n model. The previous upper bounds for triangle detection and enumeration in\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\mathsf {CONGEST}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n were\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\tilde{O}(n^{2/3})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n and\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\tilde{O}(n^{3/4})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n , respectively, due to Izumi and Le Gall [PODC’17].\n </jats:p>\n <jats:p>\n An\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $(\\epsilon ,\\phi)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n -expander decomposition of a graph\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $G=(V,E)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n is a clustering of the vertices\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $V=V_{1}\\cup \\cdots \\cup V_{x}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n such that (i) each cluster\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $V_{i}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n induces a subgraph with conductance at least\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\phi$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n and (ii) the number of inter-cluster edges is at most\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\epsilon |E|$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n . We show that an\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $(\\epsilon ,\\phi)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n -expander decomposition with\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\phi =(\\epsilon /\\log n)^{2^{O(k)}}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n can be constructed in\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $O(n^{2/k}\\cdot {\\operatorname{poly}}(1/\\phi ,\\log n))$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n rounds for any\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\epsilon \\in (0,1)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n and positive integer\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $k$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n . For example, a\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $(1/n^{o(1)},1/n^{o(1)})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n -expander decomposition only requires\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $n^{o(1)}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n rounds to compute, which is optimal up to subpolynomial factors, and a\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\left(0.1, 1/{\\operatorname{poly}}\\log n\\right)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n -expander decomposition can be computed in\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $O\\left(n^{\\gamma }\\right)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n rounds, for any arbitrarily small constant\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\gamma \\gt 0$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n .\n </jats:p>\n <jats:p>\n Our triangle finding algorithms are based on the following generic framework using expander decompositions, which is of independent interest. We first construct an expander decomposition. For each cluster, we simulate\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\mathsf {CONGESTED}\\text{-}\\mathsf {CLIQUE}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n algorithms with small overhead by applying the\n <jats:italic>expander routing</jats:italic>\n algorithm due to Ghaffari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.\n </jats:p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"30 1","pages":"21:1-21:36"},"PeriodicalIF":2.3000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Near-optimal Distributed Triangle Enumeration via Expander Decompositions\",\"authors\":\"Yi-Jun Chang, S. Pettie, Thatchaphol Saranurak, Hengjie Zhang\",\"doi\":\"10.1145/3446330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>\\n We present improved distributed algorithms for variants of the triangle finding problem in the\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\mathsf {CONGEST}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n model. We show that triangle detection, counting, and enumeration can be solved in\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\tilde{O}(n^{1/3})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n rounds using\\n <jats:italic>expander decompositions</jats:italic>\\n . This matches the triangle enumeration lower bound of\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\tilde{\\\\Omega }(n^{1/3})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n by Izumi and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in the\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\mathsf {CONGESTED}\\\\text{-}\\\\mathsf {CLIQUE}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n model. The previous upper bounds for triangle detection and enumeration in\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\mathsf {CONGEST}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n were\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\tilde{O}(n^{2/3})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n and\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\tilde{O}(n^{3/4})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n , respectively, due to Izumi and Le Gall [PODC’17].\\n </jats:p>\\n <jats:p>\\n An\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $(\\\\epsilon ,\\\\phi)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n -expander decomposition of a graph\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $G=(V,E)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n is a clustering of the vertices\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $V=V_{1}\\\\cup \\\\cdots \\\\cup V_{x}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n such that (i) each cluster\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $V_{i}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n induces a subgraph with conductance at least\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\phi$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n and (ii) the number of inter-cluster edges is at most\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\epsilon |E|$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n . We show that an\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $(\\\\epsilon ,\\\\phi)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n -expander decomposition with\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\phi =(\\\\epsilon /\\\\log n)^{2^{O(k)}}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n can be constructed in\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $O(n^{2/k}\\\\cdot {\\\\operatorname{poly}}(1/\\\\phi ,\\\\log n))$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n rounds for any\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\epsilon \\\\in (0,1)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n and positive integer\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $k$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n . For example, a\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $(1/n^{o(1)},1/n^{o(1)})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n -expander decomposition only requires\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $n^{o(1)}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n rounds to compute, which is optimal up to subpolynomial factors, and a\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\left(0.1, 1/{\\\\operatorname{poly}}\\\\log n\\\\right)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n -expander decomposition can be computed in\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $O\\\\left(n^{\\\\gamma }\\\\right)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n rounds, for any arbitrarily small constant\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\gamma \\\\gt 0$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n .\\n </jats:p>\\n <jats:p>\\n Our triangle finding algorithms are based on the following generic framework using expander decompositions, which is of independent interest. We first construct an expander decomposition. For each cluster, we simulate\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\mathsf {CONGESTED}\\\\text{-}\\\\mathsf {CLIQUE}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n algorithms with small overhead by applying the\\n <jats:italic>expander routing</jats:italic>\\n algorithm due to Ghaffari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.\\n </jats:p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"30 1\",\"pages\":\"21:1-21:36\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3446330\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3446330","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 13
摘要
我们提出了改进的分布式算法来解决模型中三角形查找问题的变体。我们证明了三角形检测、计数和枚举可以使用扩展器分解在轮询中解决。这与Izumi和Le Gall [PODC ' 17]以及Pandurangan、Robinson和Scquizzato [SPAA ' 18]的三角枚举下界相吻合,即使在模型中也成立。由于Izumi和Le Gall [PODC ' 17],之前的三角形检测和枚举上界分别为和。图的扩展分解是顶点的聚类,使得(i)每个聚类诱导出一个电导最少且(ii)簇间边数最多的子图。我们证明了对于任意的-展开式分解都可以被构造为整数一个正整数。例如,-展开器分解只需要计算轮数,这是最优的次多项式因子,对于任意小的常数,展开分解都可以以轮为单位计算。我们的三角查找算法基于以下使用扩展器分解的通用框架,这是独立的兴趣。我们首先构造一个展开器分解。对于每个集群,我们通过应用基于Ghaffari、Kuhn和Su [PODC ' 17]的扩展路由算法来模拟开销较小的算法。最后,我们使用递归调用处理集群间边缘。
Near-optimal Distributed Triangle Enumeration via Expander Decompositions
We present improved distributed algorithms for variants of the triangle finding problem in the
model. We show that triangle detection, counting, and enumeration can be solved in
rounds using
expander decompositions
. This matches the triangle enumeration lower bound of
by Izumi and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in the
model. The previous upper bounds for triangle detection and enumeration in
were
and
, respectively, due to Izumi and Le Gall [PODC’17].
An
-expander decomposition of a graph
is a clustering of the vertices
such that (i) each cluster
induces a subgraph with conductance at least
and (ii) the number of inter-cluster edges is at most
. We show that an
-expander decomposition with
can be constructed in
rounds for any
and positive integer
. For example, a
-expander decomposition only requires
rounds to compute, which is optimal up to subpolynomial factors, and a
-expander decomposition can be computed in
rounds, for any arbitrarily small constant
.
Our triangle finding algorithms are based on the following generic framework using expander decompositions, which is of independent interest. We first construct an expander decomposition. For each cluster, we simulate
algorithms with small overhead by applying the
expander routing
algorithm due to Ghaffari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining