基于扩展器分解的近最优分布三角枚举

IF 2.3 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of the ACM Pub Date : 2021-05-13 DOI:10.1145/3446330
Yi-Jun Chang, S. Pettie, Thatchaphol Saranurak, Hengjie Zhang
{"title":"基于扩展器分解的近最优分布三角枚举","authors":"Yi-Jun Chang, S. Pettie, Thatchaphol Saranurak, Hengjie Zhang","doi":"10.1145/3446330","DOIUrl":null,"url":null,"abstract":"<jats:p>\n We present improved distributed algorithms for variants of the triangle finding problem in the\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\mathsf {CONGEST}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n model. We show that triangle detection, counting, and enumeration can be solved in\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\tilde{O}(n^{1/3})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n rounds using\n <jats:italic>expander decompositions</jats:italic>\n . This matches the triangle enumeration lower bound of\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\tilde{\\Omega }(n^{1/3})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n by Izumi and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in the\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\mathsf {CONGESTED}\\text{-}\\mathsf {CLIQUE}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n model. The previous upper bounds for triangle detection and enumeration in\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\mathsf {CONGEST}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n were\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\tilde{O}(n^{2/3})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n and\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\tilde{O}(n^{3/4})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n , respectively, due to Izumi and Le Gall [PODC’17].\n </jats:p>\n <jats:p>\n An\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $(\\epsilon ,\\phi)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n -expander decomposition of a graph\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $G=(V,E)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n is a clustering of the vertices\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $V=V_{1}\\cup \\cdots \\cup V_{x}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n such that (i) each cluster\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $V_{i}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n induces a subgraph with conductance at least\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\phi$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n and (ii) the number of inter-cluster edges is at most\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\epsilon |E|$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n . We show that an\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $(\\epsilon ,\\phi)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n -expander decomposition with\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\phi =(\\epsilon /\\log n)^{2^{O(k)}}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n can be constructed in\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $O(n^{2/k}\\cdot {\\operatorname{poly}}(1/\\phi ,\\log n))$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n rounds for any\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\epsilon \\in (0,1)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n and positive integer\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $k$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n . For example, a\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $(1/n^{o(1)},1/n^{o(1)})$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n -expander decomposition only requires\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $n^{o(1)}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n rounds to compute, which is optimal up to subpolynomial factors, and a\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\left(0.1, 1/{\\operatorname{poly}}\\log n\\right)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n -expander decomposition can be computed in\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $O\\left(n^{\\gamma }\\right)$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n rounds, for any arbitrarily small constant\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\gamma \\gt 0$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n .\n </jats:p>\n <jats:p>\n Our triangle finding algorithms are based on the following generic framework using expander decompositions, which is of independent interest. We first construct an expander decomposition. For each cluster, we simulate\n <jats:inline-formula>\n <jats:alternatives>\n <jats:tex-math>\n <?TeX $\\mathsf {CONGESTED}\\text{-}\\mathsf {CLIQUE}$?>\n </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\n algorithms with small overhead by applying the\n <jats:italic>expander routing</jats:italic>\n algorithm due to Ghaffari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.\n </jats:p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"30 1","pages":"21:1-21:36"},"PeriodicalIF":2.3000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Near-optimal Distributed Triangle Enumeration via Expander Decompositions\",\"authors\":\"Yi-Jun Chang, S. Pettie, Thatchaphol Saranurak, Hengjie Zhang\",\"doi\":\"10.1145/3446330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>\\n We present improved distributed algorithms for variants of the triangle finding problem in the\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\mathsf {CONGEST}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n model. We show that triangle detection, counting, and enumeration can be solved in\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\tilde{O}(n^{1/3})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n rounds using\\n <jats:italic>expander decompositions</jats:italic>\\n . This matches the triangle enumeration lower bound of\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\tilde{\\\\Omega }(n^{1/3})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n by Izumi and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in the\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\mathsf {CONGESTED}\\\\text{-}\\\\mathsf {CLIQUE}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n model. The previous upper bounds for triangle detection and enumeration in\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\mathsf {CONGEST}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n were\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\tilde{O}(n^{2/3})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n and\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\tilde{O}(n^{3/4})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n , respectively, due to Izumi and Le Gall [PODC’17].\\n </jats:p>\\n <jats:p>\\n An\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $(\\\\epsilon ,\\\\phi)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n -expander decomposition of a graph\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $G=(V,E)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n is a clustering of the vertices\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $V=V_{1}\\\\cup \\\\cdots \\\\cup V_{x}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n such that (i) each cluster\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $V_{i}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n induces a subgraph with conductance at least\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\phi$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n and (ii) the number of inter-cluster edges is at most\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\epsilon |E|$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n . We show that an\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $(\\\\epsilon ,\\\\phi)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n -expander decomposition with\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\phi =(\\\\epsilon /\\\\log n)^{2^{O(k)}}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n can be constructed in\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $O(n^{2/k}\\\\cdot {\\\\operatorname{poly}}(1/\\\\phi ,\\\\log n))$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n rounds for any\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\epsilon \\\\in (0,1)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n and positive integer\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $k$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n . For example, a\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $(1/n^{o(1)},1/n^{o(1)})$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n -expander decomposition only requires\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $n^{o(1)}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n rounds to compute, which is optimal up to subpolynomial factors, and a\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\left(0.1, 1/{\\\\operatorname{poly}}\\\\log n\\\\right)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n -expander decomposition can be computed in\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $O\\\\left(n^{\\\\gamma }\\\\right)$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n rounds, for any arbitrarily small constant\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\gamma \\\\gt 0$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n .\\n </jats:p>\\n <jats:p>\\n Our triangle finding algorithms are based on the following generic framework using expander decompositions, which is of independent interest. We first construct an expander decomposition. For each cluster, we simulate\\n <jats:inline-formula>\\n <jats:alternatives>\\n <jats:tex-math>\\n <?TeX $\\\\mathsf {CONGESTED}\\\\text{-}\\\\mathsf {CLIQUE}$?>\\n </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>\\n algorithms with small overhead by applying the\\n <jats:italic>expander routing</jats:italic>\\n algorithm due to Ghaffari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.\\n </jats:p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"30 1\",\"pages\":\"21:1-21:36\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3446330\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3446330","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 13

摘要

我们提出了改进的分布式算法来解决模型中三角形查找问题的变体。我们证明了三角形检测、计数和枚举可以使用扩展器分解在轮询中解决。这与Izumi和Le Gall [PODC ' 17]以及Pandurangan、Robinson和Scquizzato [SPAA ' 18]的三角枚举下界相吻合,即使在模型中也成立。由于Izumi和Le Gall [PODC ' 17],之前的三角形检测和枚举上界分别为和。图的扩展分解是顶点的聚类,使得(i)每个聚类诱导出一个电导最少且(ii)簇间边数最多的子图。我们证明了对于任意的-展开式分解都可以被构造为整数一个正整数。例如,-展开器分解只需要计算轮数,这是最优的次多项式因子,对于任意小的常数,展开分解都可以以轮为单位计算。我们的三角查找算法基于以下使用扩展器分解的通用框架,这是独立的兴趣。我们首先构造一个展开器分解。对于每个集群,我们通过应用基于Ghaffari、Kuhn和Su [PODC ' 17]的扩展路由算法来模拟开销较小的算法。最后,我们使用递归调用处理集群间边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-optimal Distributed Triangle Enumeration via Expander Decompositions
We present improved distributed algorithms for variants of the triangle finding problem in the model. We show that triangle detection, counting, and enumeration can be solved in rounds using expander decompositions . This matches the triangle enumeration lower bound of by Izumi and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in the model. The previous upper bounds for triangle detection and enumeration in were and , respectively, due to Izumi and Le Gall [PODC’17]. An -expander decomposition of a graph is a clustering of the vertices such that (i) each cluster induces a subgraph with conductance at least and (ii) the number of inter-cluster edges is at most . We show that an -expander decomposition with can be constructed in rounds for any and positive integer . For example, a -expander decomposition only requires rounds to compute, which is optimal up to subpolynomial factors, and a -expander decomposition can be computed in rounds, for any arbitrarily small constant . Our triangle finding algorithms are based on the following generic framework using expander decompositions, which is of independent interest. We first construct an expander decomposition. For each cluster, we simulate algorithms with small overhead by applying the expander routing algorithm due to Ghaffari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the ACM
Journal of the ACM 工程技术-计算机:理论方法
CiteScore
7.50
自引率
0.00%
发文量
51
审稿时长
3 months
期刊介绍: The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining
期刊最新文献
Query lower bounds for log-concave sampling Transaction Fee Mechanism Design Sparse Higher Order Čech Filtrations Killing a Vortex Separations in Proof Complexity and TFNP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1