Anirban Chakraborty, Debasis Ganguly, A. Caputo, G. Jones
{"title":"基于核密度估计的多上下文兴趣点推荐因子关联模型","authors":"Anirban Chakraborty, Debasis Ganguly, A. Caputo, G. Jones","doi":"10.1007/s10791-021-09400-9","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"19 1","pages":"44 - 90"},"PeriodicalIF":1.7000,"publicationDate":"2020-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Kernel density estimation based factored relevance model for multi-contextual point-of-interest recommendation\",\"authors\":\"Anirban Chakraborty, Debasis Ganguly, A. Caputo, G. Jones\",\"doi\":\"10.1007/s10791-021-09400-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54352,\"journal\":{\"name\":\"Information Retrieval Journal\",\"volume\":\"19 1\",\"pages\":\"44 - 90\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Retrieval Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10791-021-09400-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-021-09400-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
期刊介绍:
The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.