掺杂tio2基钙钛矿太阳能电池吸收性能的FDTD模拟

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY Modelling and Simulation in Engineering Pub Date : 2022-02-27 DOI:10.1155/2022/9299279
B. Mulyanti, C. Wulandari, L. Hasanah, R. Pawinanto, I. Hamidah
{"title":"掺杂tio2基钙钛矿太阳能电池吸收性能的FDTD模拟","authors":"B. Mulyanti, C. Wulandari, L. Hasanah, R. Pawinanto, I. Hamidah","doi":"10.1155/2022/9299279","DOIUrl":null,"url":null,"abstract":"In the third generation of the solar cell era, significant trends in the development of perovskite solar cells (PSC) were observed. Exploring suitable materials for its wafer structure, such as perovskite and electron transport layers (ETL), were a major emphasis of high-performance PSC development. Because of its matching band structure to MaPbI3, TiO2 is the most often utilized material for ETL. However, in the application of TiO2 to PSC, electron trapping and a wide energy gap become a drawback. The goal of this research is to improve the absorption performance of PSC employing ETL with Fe and Ta-doped TiO2 as well as the thickness of the material. The interaction between the electromagnetic waves of light and the solar cell structure was calculated using Finite-Difference Time-Domain (FDTD) simulations, which resulted in the absorption spectra. In comparison to pure TiO2, which absorbs only 79.5% of the incident light, Fe-TiO2 and Ta-TiO2 as ETL in solar cells have increased absorption spectra to 81.7% and 81.2%, respectively. Finally, we may conclude that the optimum ETL layer parameters are 0.32% Fe doping and a thickness of 100 nm.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Absorption Performance of Doped TiO2-Based Perovskite Solar Cell using FDTD Simulation\",\"authors\":\"B. Mulyanti, C. Wulandari, L. Hasanah, R. Pawinanto, I. Hamidah\",\"doi\":\"10.1155/2022/9299279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the third generation of the solar cell era, significant trends in the development of perovskite solar cells (PSC) were observed. Exploring suitable materials for its wafer structure, such as perovskite and electron transport layers (ETL), were a major emphasis of high-performance PSC development. Because of its matching band structure to MaPbI3, TiO2 is the most often utilized material for ETL. However, in the application of TiO2 to PSC, electron trapping and a wide energy gap become a drawback. The goal of this research is to improve the absorption performance of PSC employing ETL with Fe and Ta-doped TiO2 as well as the thickness of the material. The interaction between the electromagnetic waves of light and the solar cell structure was calculated using Finite-Difference Time-Domain (FDTD) simulations, which resulted in the absorption spectra. In comparison to pure TiO2, which absorbs only 79.5% of the incident light, Fe-TiO2 and Ta-TiO2 as ETL in solar cells have increased absorption spectra to 81.7% and 81.2%, respectively. Finally, we may conclude that the optimum ETL layer parameters are 0.32% Fe doping and a thickness of 100 nm.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9299279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9299279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

在第三代太阳能电池时代,钙钛矿太阳能电池(PSC)的发展趋势显著。探索适合其晶圆结构的材料,如钙钛矿和电子传输层(ETL),是高性能PSC开发的主要重点。TiO2由于具有与MaPbI3匹配的能带结构,是ETL中最常用的材料。然而,在将TiO2应用于PSC时,电子捕获和较大的能隙成为缺点。本研究的目的是利用ETL提高Fe和ta掺杂TiO2的PSC的吸收性能以及材料的厚度。利用时域有限差分(finite -差分Time-Domain, FDTD)模拟计算了光波与太阳能电池结构的相互作用,得到了吸收光谱。与纯TiO2仅吸收79.5%的入射光相比,Fe-TiO2和Ta-TiO2作为ETL在太阳能电池中的吸收光谱分别提高到81.7%和81.2%。最后,我们可以得出最佳的ETL层参数为0.32%的Fe掺杂和100 nm的厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Absorption Performance of Doped TiO2-Based Perovskite Solar Cell using FDTD Simulation
In the third generation of the solar cell era, significant trends in the development of perovskite solar cells (PSC) were observed. Exploring suitable materials for its wafer structure, such as perovskite and electron transport layers (ETL), were a major emphasis of high-performance PSC development. Because of its matching band structure to MaPbI3, TiO2 is the most often utilized material for ETL. However, in the application of TiO2 to PSC, electron trapping and a wide energy gap become a drawback. The goal of this research is to improve the absorption performance of PSC employing ETL with Fe and Ta-doped TiO2 as well as the thickness of the material. The interaction between the electromagnetic waves of light and the solar cell structure was calculated using Finite-Difference Time-Domain (FDTD) simulations, which resulted in the absorption spectra. In comparison to pure TiO2, which absorbs only 79.5% of the incident light, Fe-TiO2 and Ta-TiO2 as ETL in solar cells have increased absorption spectra to 81.7% and 81.2%, respectively. Finally, we may conclude that the optimum ETL layer parameters are 0.32% Fe doping and a thickness of 100 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
期刊最新文献
Finite Element Modelling and Simulation of Tunnel Gates of Dam Structures in ABAQUS Using Reduced-Integrated 8-Node Hexahedral Solid-Shell Element Modeling and Simulation of the Effect of Airbag Thickness on the Performance of Extended Handle Pneumatic Floor Jack Assessment of Fractional and Integer Order Models of Induction Motor Using MATLAB/Simulink State of the Art of Modelling and Design Approaches for Ejectors in Proton Exchange Membrane Fuel Cell Predictive Modeling of Environmental Impact on Drone Datalink Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1