高效敏感度导向区块链加密,提高云数据安全性

A. Siva Kumar, S. Godfrey Winster, R. Ramesh
{"title":"高效敏感度导向区块链加密,提高云数据安全性","authors":"A. Siva Kumar, S. Godfrey Winster, R. Ramesh","doi":"10.1177/1063293X211008586","DOIUrl":null,"url":null,"abstract":"Data security in the cloud has become a dominant topic being discussed in recent times as the security of data in the cloud has been focused on by several researchers. However, the data security was enforced at the attribute level, the adversaries are capable of learning the method of data encryption even there are access restrictions are enforced at an attribute level. To challenge the adversaries with more sophisticated security measures, an efficient real-time service-centric feature sensitivity analysis (RSFSA) model is proposed in this paper. The RSFSA model analyses the sensitivity of different features being accessed by any service and at multiple levels. At each level, the method checks the set of features being accessed and the number of features the user has access grant to compute the FLAG value for the user according to the profile given. Based on the value of FLAG, the user has been granted or denied service access. On the other side, the method maintains different encryption schemes and keys for each level of features. As the features are organized in multiple levels, the method maintains a set of schemes and keys for each level dedicative. Based on the service level and data, the method selects an encryption scheme and key to perform data encryption. According to that, the service access data has been encrypted at the attribute level with a specific scheme and key. Data encrypted has been uploaded to the blockchain and the method modifies the reference part of the chain to connect only the blocks to which the user has access. The chain given to the user would do not contain any reference from a specific block to which the user has no access. The proposed method improves the performance of data security and access restriction greatly.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"41 1","pages":"249 - 257"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient sensitivity orient blockchain encryption for improved data security in cloud\",\"authors\":\"A. Siva Kumar, S. Godfrey Winster, R. Ramesh\",\"doi\":\"10.1177/1063293X211008586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data security in the cloud has become a dominant topic being discussed in recent times as the security of data in the cloud has been focused on by several researchers. However, the data security was enforced at the attribute level, the adversaries are capable of learning the method of data encryption even there are access restrictions are enforced at an attribute level. To challenge the adversaries with more sophisticated security measures, an efficient real-time service-centric feature sensitivity analysis (RSFSA) model is proposed in this paper. The RSFSA model analyses the sensitivity of different features being accessed by any service and at multiple levels. At each level, the method checks the set of features being accessed and the number of features the user has access grant to compute the FLAG value for the user according to the profile given. Based on the value of FLAG, the user has been granted or denied service access. On the other side, the method maintains different encryption schemes and keys for each level of features. As the features are organized in multiple levels, the method maintains a set of schemes and keys for each level dedicative. Based on the service level and data, the method selects an encryption scheme and key to perform data encryption. According to that, the service access data has been encrypted at the attribute level with a specific scheme and key. Data encrypted has been uploaded to the blockchain and the method modifies the reference part of the chain to connect only the blocks to which the user has access. The chain given to the user would do not contain any reference from a specific block to which the user has no access. The proposed method improves the performance of data security and access restriction greatly.\",\"PeriodicalId\":10680,\"journal\":{\"name\":\"Concurrent Engineering\",\"volume\":\"41 1\",\"pages\":\"249 - 257\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1063293X211008586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X211008586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

云中的数据安全已经成为近年来讨论的主要话题,因为云中的数据安全已经成为一些研究人员关注的焦点。然而,由于数据安全是在属性级别强制执行的,即使在属性级别强制执行访问限制,攻击者也能够学习数据加密的方法。为了用更复杂的安全措施挑战攻击者,本文提出了一种高效的实时以服务为中心的特征敏感性分析(RSFSA)模型。RSFSA模型分析任何服务在多个级别访问的不同特征的敏感性。在每个级别上,该方法检查正在访问的特性集和用户有权访问的特性数量,以便根据给定的配置文件为用户计算FLAG值。根据FLAG的值,用户被授予或拒绝了业务访问权限。另一方面,该方法为每个级别的特征维护不同的加密方案和密钥。由于特征被组织在多个层次上,该方法为每个层次专门维护一组方案和键。该方法根据服务等级和数据选择加密方案和密钥进行数据加密。据此,对业务访问数据在属性级使用特定的方案和密钥进行加密。加密的数据已上传到区块链,该方法修改链的参考部分,仅连接用户有权访问的区块。给定给用户的链将不包含任何来自用户无权访问的特定块的引用。该方法大大提高了数据安全性能和访问限制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient sensitivity orient blockchain encryption for improved data security in cloud
Data security in the cloud has become a dominant topic being discussed in recent times as the security of data in the cloud has been focused on by several researchers. However, the data security was enforced at the attribute level, the adversaries are capable of learning the method of data encryption even there are access restrictions are enforced at an attribute level. To challenge the adversaries with more sophisticated security measures, an efficient real-time service-centric feature sensitivity analysis (RSFSA) model is proposed in this paper. The RSFSA model analyses the sensitivity of different features being accessed by any service and at multiple levels. At each level, the method checks the set of features being accessed and the number of features the user has access grant to compute the FLAG value for the user according to the profile given. Based on the value of FLAG, the user has been granted or denied service access. On the other side, the method maintains different encryption schemes and keys for each level of features. As the features are organized in multiple levels, the method maintains a set of schemes and keys for each level dedicative. Based on the service level and data, the method selects an encryption scheme and key to perform data encryption. According to that, the service access data has been encrypted at the attribute level with a specific scheme and key. Data encrypted has been uploaded to the blockchain and the method modifies the reference part of the chain to connect only the blocks to which the user has access. The chain given to the user would do not contain any reference from a specific block to which the user has no access. The proposed method improves the performance of data security and access restriction greatly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity study of process parameters of wire arc additive manufacturing using probabilistic deep learning and uncertainty quantification Retraction Notice Decision-making solutions based artificial intelligence and hybrid software for optimal sizing and energy management in a smart grid system Harness collaboration between manufacturing Small and medium-sized enterprises through a collaborative platform based on the business model canvas Research on the evolution law of cloud manufacturing service ecosystem based on multi-agent behavior simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1