{"title":"高过冷度全新风处理机组性能试验及全年火用分析","authors":"Zhongbin Zhang, Ya-Ping Pan, Hu Huang, Qing Jiang","doi":"10.1080/10789669.2014.939059","DOIUrl":null,"url":null,"abstract":"In this article, an all fresh air-handling unit with high sub-cooling degree is presented. In this unit, refrigerant flows through the high-pressure liquid receiver before it goes through the sub-cooler so as to ensure sufficient sub-cooling degree. Based on the experimental comparison between this unit and conventional unit, coupling relationships between condensing temperatures and sub-cooling degrees of these two units are worked out and analyzed. Experimental results and exergy analysis show that, sub-cooling degree drops with the decrease of condensing temperature, and sub-cooling degree of the designed unit is kept over 7°C when the sub-cooling degree of the conventional unit is only close to 0°C. Furthermore, a method of year-round exergy calculation is presented and applied in calculating and analyzing the year-round exergy of the all fresh air-handling unit. Calculation and analysis show that the all fresh air-handling unit designed and investigated in this article has a year-round exergy efficiency of 28.38%, which is 3.17% higher than that of the conventional unit without high sub-cooling degree.","PeriodicalId":13238,"journal":{"name":"HVAC&R Research","volume":"262 1","pages":"810 - 818"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance experiment of all fresh air-handling unit with high sub-cooling degree and year-round exergy analysis\",\"authors\":\"Zhongbin Zhang, Ya-Ping Pan, Hu Huang, Qing Jiang\",\"doi\":\"10.1080/10789669.2014.939059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an all fresh air-handling unit with high sub-cooling degree is presented. In this unit, refrigerant flows through the high-pressure liquid receiver before it goes through the sub-cooler so as to ensure sufficient sub-cooling degree. Based on the experimental comparison between this unit and conventional unit, coupling relationships between condensing temperatures and sub-cooling degrees of these two units are worked out and analyzed. Experimental results and exergy analysis show that, sub-cooling degree drops with the decrease of condensing temperature, and sub-cooling degree of the designed unit is kept over 7°C when the sub-cooling degree of the conventional unit is only close to 0°C. Furthermore, a method of year-round exergy calculation is presented and applied in calculating and analyzing the year-round exergy of the all fresh air-handling unit. Calculation and analysis show that the all fresh air-handling unit designed and investigated in this article has a year-round exergy efficiency of 28.38%, which is 3.17% higher than that of the conventional unit without high sub-cooling degree.\",\"PeriodicalId\":13238,\"journal\":{\"name\":\"HVAC&R Research\",\"volume\":\"262 1\",\"pages\":\"810 - 818\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HVAC&R Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10789669.2014.939059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HVAC&R Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10789669.2014.939059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance experiment of all fresh air-handling unit with high sub-cooling degree and year-round exergy analysis
In this article, an all fresh air-handling unit with high sub-cooling degree is presented. In this unit, refrigerant flows through the high-pressure liquid receiver before it goes through the sub-cooler so as to ensure sufficient sub-cooling degree. Based on the experimental comparison between this unit and conventional unit, coupling relationships between condensing temperatures and sub-cooling degrees of these two units are worked out and analyzed. Experimental results and exergy analysis show that, sub-cooling degree drops with the decrease of condensing temperature, and sub-cooling degree of the designed unit is kept over 7°C when the sub-cooling degree of the conventional unit is only close to 0°C. Furthermore, a method of year-round exergy calculation is presented and applied in calculating and analyzing the year-round exergy of the all fresh air-handling unit. Calculation and analysis show that the all fresh air-handling unit designed and investigated in this article has a year-round exergy efficiency of 28.38%, which is 3.17% higher than that of the conventional unit without high sub-cooling degree.