尼莫地平片液相法处方及评价

N. Durge, K. Parida
{"title":"尼莫地平片液相法处方及评价","authors":"N. Durge, K. Parida","doi":"10.31142/IJTSRD23863","DOIUrl":null,"url":null,"abstract":"Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Liquisolid technique is novel concept of the drug delivery via the oral route. This technique is applied to poorly water soluble , water insoluble or lipophilic drugs. According to the new formulation method of liquisolid compact, liquid medication such as solution or suspensions of water insoluble drug in suitable nonvolatile solvent can be converted into acceptably flowing and compressible powders by blending with selected powder excipients. The present work endeavour is directed towards the development of liquisolid compact for production of immediate release tablet of water insoluble Nimodipine. Liquisolid compacts were prepared by using polyethylene glycol 300 as the liquid vehicle or non volatile solvent. Crospovidone was used as a superdisintegrating agent and PVP K30 as a binder. Microcrystalline cellulose was used as a absorbing carrier and silicone dioxide as adsorbing coating material. The prepared liquisolid system were evaluated for their micromeretic properties and possible drug-excipients interaction . The FTIR spectra study ruled out any interaction between the drug and excipients in preparation of Nimodipine liquisolid compact. The in-vitro dissolution study confirmed enhance drug release from liquisolid compacts by using USP type I basket in 0.5 % SLS in water. The selected optimal formula released 93.86 % of its content in 30 min which is showing immediate release. The results showed that use of superdisintegrants had remarkable impact on the release rate of Nimodipine from Liquisolid compact, enhancing the release rate of the drug from liquisolid compact.","PeriodicalId":14446,"journal":{"name":"International Journal of Trend in Scientific Research and Development","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and Evaluation of Nimodipine Tablet by Liquisolid Technique\",\"authors\":\"N. Durge, K. Parida\",\"doi\":\"10.31142/IJTSRD23863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Liquisolid technique is novel concept of the drug delivery via the oral route. This technique is applied to poorly water soluble , water insoluble or lipophilic drugs. According to the new formulation method of liquisolid compact, liquid medication such as solution or suspensions of water insoluble drug in suitable nonvolatile solvent can be converted into acceptably flowing and compressible powders by blending with selected powder excipients. The present work endeavour is directed towards the development of liquisolid compact for production of immediate release tablet of water insoluble Nimodipine. Liquisolid compacts were prepared by using polyethylene glycol 300 as the liquid vehicle or non volatile solvent. Crospovidone was used as a superdisintegrating agent and PVP K30 as a binder. Microcrystalline cellulose was used as a absorbing carrier and silicone dioxide as adsorbing coating material. The prepared liquisolid system were evaluated for their micromeretic properties and possible drug-excipients interaction . The FTIR spectra study ruled out any interaction between the drug and excipients in preparation of Nimodipine liquisolid compact. The in-vitro dissolution study confirmed enhance drug release from liquisolid compacts by using USP type I basket in 0.5 % SLS in water. The selected optimal formula released 93.86 % of its content in 30 min which is showing immediate release. The results showed that use of superdisintegrants had remarkable impact on the release rate of Nimodipine from Liquisolid compact, enhancing the release rate of the drug from liquisolid compact.\",\"PeriodicalId\":14446,\"journal\":{\"name\":\"International Journal of Trend in Scientific Research and Development\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Trend in Scientific Research and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31142/IJTSRD23863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Trend in Scientific Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31142/IJTSRD23863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

版权所有©2019由作者和《国际科学研究与发展趋势杂志》所有。这是一篇基于知识共享署名许可(CC BY 4.0)的开放获取文章(http://creativecommons.org/licenses/ BY /4.0)摘要液体固体技术是一种通过口服途径给药的新概念。该技术适用于难水溶性、难水溶性或亲脂性药物。根据液固紧凑剂的新配方方法,液体药物,如水不溶性药物的溶液或悬浮液,在合适的非挥发性溶剂中,通过与选定的粉末赋形剂混合,可以转化为可接受的流动和可压缩的粉末。本研究的目的是研制用于生产水不溶性尼莫地平速释片的液体固体粉剂。采用聚乙二醇300作为液体载体或非挥发性溶剂制备了液固压剂。以交叉维酮为超崩解剂,PVP K30为粘结剂。以微晶纤维素为吸附载体,二氧化硅为吸附涂层。评价了所制备的液固体系的微流变特性和可能的药物-赋形剂相互作用。在制备尼莫地平液体固体致密剂时,红外光谱研究排除了药物与辅料之间的相互作用。体外溶出研究证实,在0.5% SLS水溶液中使用USP I型筐可促进液体固体致密剂的药物释放。优选出的最佳配方在30 min内释放率为93.86%,具有立即释放的特点。结果表明,超崩解剂的使用对尼莫地平的溶出速度有显著影响,提高了药物的溶出速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formulation and Evaluation of Nimodipine Tablet by Liquisolid Technique
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Liquisolid technique is novel concept of the drug delivery via the oral route. This technique is applied to poorly water soluble , water insoluble or lipophilic drugs. According to the new formulation method of liquisolid compact, liquid medication such as solution or suspensions of water insoluble drug in suitable nonvolatile solvent can be converted into acceptably flowing and compressible powders by blending with selected powder excipients. The present work endeavour is directed towards the development of liquisolid compact for production of immediate release tablet of water insoluble Nimodipine. Liquisolid compacts were prepared by using polyethylene glycol 300 as the liquid vehicle or non volatile solvent. Crospovidone was used as a superdisintegrating agent and PVP K30 as a binder. Microcrystalline cellulose was used as a absorbing carrier and silicone dioxide as adsorbing coating material. The prepared liquisolid system were evaluated for their micromeretic properties and possible drug-excipients interaction . The FTIR spectra study ruled out any interaction between the drug and excipients in preparation of Nimodipine liquisolid compact. The in-vitro dissolution study confirmed enhance drug release from liquisolid compacts by using USP type I basket in 0.5 % SLS in water. The selected optimal formula released 93.86 % of its content in 30 min which is showing immediate release. The results showed that use of superdisintegrants had remarkable impact on the release rate of Nimodipine from Liquisolid compact, enhancing the release rate of the drug from liquisolid compact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Status of Secondary Sector in Nabarangpur, Odisha Factors Influencing Smallholder Potato Farmers’ Choice Decisions of Market Outlets in Musanze and Nyabihu Districts, Rwanda: A Multivariate Probit MODEL Maintenance and other Operating Expenses (MOOE) and School Based Management (SBM) Performance of Secondary Schools in Samar Island Biogas Production from Decanter Cake of Palm Oil Mill from South India Estimating the Survival Function of HIV/AIDS Patients using Weibull Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1