{"title":"一种基于数字双子星的卫星网络sdc引起的天坑和灰洞节点检测与保护框架","authors":"Gongzhe Qiao, Zhuang Yi, Tong Ye, Yuan Qiao","doi":"10.3390/aerospace10090788","DOIUrl":null,"url":null,"abstract":"In the space environment, cosmic rays and high-energy particles may cause a single-event upset (SEU) during program execution, and further cause silent data corruption (SDC) errors in program outputs. After extensive research on SEU and SDC errors, it has been found that SDC errors in the routing program in satellite networks may lead to the emergence of Sinkhole (SH) and Grayhole (GH) nodes in the network, which may cause damage to satellite networks. To find and solve the problems in time, a digital-twin-based detection and protection framework for SDC-induced SH and GH nodes in satellite networks is proposed. First, the satellite network fault model under SEU and the generation mechanism of SH and GH nodes induced by SDC errors are described. Then, the data structure based on digital twins required by the proposed detection and protection framework is designed, and the detection methods of SH and GH nodes induced by SDC errors are proposed. SKT and LLFI simulation tools are used to build a simulated Iridium satellite network and carry out fault injection experiments. Experiment results show that the accuracy of the proposed detection method is 98–100%, and the additional time cost of routing convergence caused by the proposed framework is 3.1–28.2%. Compared with existing SH and GH detection methods, the proposed methods can timely and accurately detect faults during the routing update stage.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"51 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Digital-Twin-Based Detection and Protection Framework for SDC-Induced Sinkhole and Grayhole Nodes in Satellite Networks\",\"authors\":\"Gongzhe Qiao, Zhuang Yi, Tong Ye, Yuan Qiao\",\"doi\":\"10.3390/aerospace10090788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the space environment, cosmic rays and high-energy particles may cause a single-event upset (SEU) during program execution, and further cause silent data corruption (SDC) errors in program outputs. After extensive research on SEU and SDC errors, it has been found that SDC errors in the routing program in satellite networks may lead to the emergence of Sinkhole (SH) and Grayhole (GH) nodes in the network, which may cause damage to satellite networks. To find and solve the problems in time, a digital-twin-based detection and protection framework for SDC-induced SH and GH nodes in satellite networks is proposed. First, the satellite network fault model under SEU and the generation mechanism of SH and GH nodes induced by SDC errors are described. Then, the data structure based on digital twins required by the proposed detection and protection framework is designed, and the detection methods of SH and GH nodes induced by SDC errors are proposed. SKT and LLFI simulation tools are used to build a simulated Iridium satellite network and carry out fault injection experiments. Experiment results show that the accuracy of the proposed detection method is 98–100%, and the additional time cost of routing convergence caused by the proposed framework is 3.1–28.2%. Compared with existing SH and GH detection methods, the proposed methods can timely and accurately detect faults during the routing update stage.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10090788\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090788","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A Digital-Twin-Based Detection and Protection Framework for SDC-Induced Sinkhole and Grayhole Nodes in Satellite Networks
In the space environment, cosmic rays and high-energy particles may cause a single-event upset (SEU) during program execution, and further cause silent data corruption (SDC) errors in program outputs. After extensive research on SEU and SDC errors, it has been found that SDC errors in the routing program in satellite networks may lead to the emergence of Sinkhole (SH) and Grayhole (GH) nodes in the network, which may cause damage to satellite networks. To find and solve the problems in time, a digital-twin-based detection and protection framework for SDC-induced SH and GH nodes in satellite networks is proposed. First, the satellite network fault model under SEU and the generation mechanism of SH and GH nodes induced by SDC errors are described. Then, the data structure based on digital twins required by the proposed detection and protection framework is designed, and the detection methods of SH and GH nodes induced by SDC errors are proposed. SKT and LLFI simulation tools are used to build a simulated Iridium satellite network and carry out fault injection experiments. Experiment results show that the accuracy of the proposed detection method is 98–100%, and the additional time cost of routing convergence caused by the proposed framework is 3.1–28.2%. Compared with existing SH and GH detection methods, the proposed methods can timely and accurately detect faults during the routing update stage.