COVID-19数据的准确预测:土耳其案例研究

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2021-08-04 DOI:10.1142/s2424922x21500066
Ç. Dinçkal
{"title":"COVID-19数据的准确预测:土耳其案例研究","authors":"Ç. Dinçkal","doi":"10.1142/s2424922x21500066","DOIUrl":null,"url":null,"abstract":"The novel coronavirus COVID-19 (SARS-CoV-2) with the first clinical case emerged in the city of Wuhan in China in December 2019. Then it has spread to the entire world in very short time and turned into a global problem, namely, it has rapidly become a pandemic. Within this context, many studies have attempted to predict the consequences of the pandemic in certain countries. Nevertheless, these studies have focused on some parameters such as reproductive number, recovery rate and mortality rate when performing forecasting. This study aims to forecast COVID-19 data in Turkey with use of a new technique which is a combination of classical exponential smoothing and moving average. There is no need for reproductive number, recovery rate and mortality rate computation in this proposed technique. Simulations are carried out for the number of daily cases, active cases (those are cases with no symptoms), daily tests, recovering patients, patients in the intensive care unit, daily intubated patients, and deaths forecasting and results are tested on Mean Absolute Percentage Error (MAPE) criterion. It is shown that this technique captured the system dynamic behavior in Turkey and made exact predictions with the use of real time dataset.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"436 1","pages":"2150006:1-2150006:17"},"PeriodicalIF":0.5000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Forecasting for COVID-19 Data: Case Study for Turkey\",\"authors\":\"Ç. Dinçkal\",\"doi\":\"10.1142/s2424922x21500066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novel coronavirus COVID-19 (SARS-CoV-2) with the first clinical case emerged in the city of Wuhan in China in December 2019. Then it has spread to the entire world in very short time and turned into a global problem, namely, it has rapidly become a pandemic. Within this context, many studies have attempted to predict the consequences of the pandemic in certain countries. Nevertheless, these studies have focused on some parameters such as reproductive number, recovery rate and mortality rate when performing forecasting. This study aims to forecast COVID-19 data in Turkey with use of a new technique which is a combination of classical exponential smoothing and moving average. There is no need for reproductive number, recovery rate and mortality rate computation in this proposed technique. Simulations are carried out for the number of daily cases, active cases (those are cases with no symptoms), daily tests, recovering patients, patients in the intensive care unit, daily intubated patients, and deaths forecasting and results are tested on Mean Absolute Percentage Error (MAPE) criterion. It is shown that this technique captured the system dynamic behavior in Turkey and made exact predictions with the use of real time dataset.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"436 1\",\"pages\":\"2150006:1-2150006:17\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424922x21500066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424922x21500066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

2019年12月,中国武汉市出现了首例临床病例的新型冠状病毒COVID-19 (SARS-CoV-2)。然后,它在很短的时间内蔓延到全世界,成为一个全球性问题,即迅速成为一种流行病。在此背景下,许多研究试图预测该流行病在某些国家的后果。然而,这些研究在进行预测时侧重于一些参数,如繁殖数、恢复率和死亡率。本研究旨在利用经典指数平滑和移动平均相结合的新技术预测土耳其的COVID-19数据。该方法不需要计算繁殖数、恢复率和死亡率。对每日病例数、活跃病例数(无症状病例)、每日检测数、康复患者数、重症监护病房患者数、每日插管患者数和死亡预测数进行了模拟,并根据平均绝对百分比误差(MAPE)标准对结果进行了检验。结果表明,该技术捕获了土耳其的系统动态行为,并使用实时数据集进行了准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exact Forecasting for COVID-19 Data: Case Study for Turkey
The novel coronavirus COVID-19 (SARS-CoV-2) with the first clinical case emerged in the city of Wuhan in China in December 2019. Then it has spread to the entire world in very short time and turned into a global problem, namely, it has rapidly become a pandemic. Within this context, many studies have attempted to predict the consequences of the pandemic in certain countries. Nevertheless, these studies have focused on some parameters such as reproductive number, recovery rate and mortality rate when performing forecasting. This study aims to forecast COVID-19 data in Turkey with use of a new technique which is a combination of classical exponential smoothing and moving average. There is no need for reproductive number, recovery rate and mortality rate computation in this proposed technique. Simulations are carried out for the number of daily cases, active cases (those are cases with no symptoms), daily tests, recovering patients, patients in the intensive care unit, daily intubated patients, and deaths forecasting and results are tested on Mean Absolute Percentage Error (MAPE) criterion. It is shown that this technique captured the system dynamic behavior in Turkey and made exact predictions with the use of real time dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1