二元数据建模的新分布族及其应用

H. M. Barakat, O. Khaled, N. Khalil
{"title":"二元数据建模的新分布族及其应用","authors":"H. M. Barakat, O. Khaled, N. Khalil","doi":"10.3844/JMSSP.2018.79.87","DOIUrl":null,"url":null,"abstract":"In this study we introduce a new method of adding two shape parameters to any baseline bivariate distribution function (df) to get a more flexible family of bivariate df's. Through the additional parameters we can fully control the type of the resulting family. This method is applied to yield a new two-parameter extension of the bivariate standard normal distribution, denoted by BSSN. The statistical properties of the BSSN family are studied. Moreover, via a mixture of the BSSN family and the standard bivariate logistic df, we get a more capable family, denoted by FBSSN. Theoretically, each of the marginals of the FBSSN contains all the possible types of df's with respect to the signs of skewness and excess kurtosis. In addition, each possesses very wide range of the indices of skewness and kurtosis. Finally, we compare the families BSSN and FBSSN with some important competitors (i.e., some generalized families of bivariate df's) via real data examples. AMS 2010 Subject Classification: 62-07; 62E10; 62F99.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"13 1","pages":"79-87"},"PeriodicalIF":0.3000,"publicationDate":"2018-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Families of Distributions for Modeling Bivariate Data, with Applications\",\"authors\":\"H. M. Barakat, O. Khaled, N. Khalil\",\"doi\":\"10.3844/JMSSP.2018.79.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we introduce a new method of adding two shape parameters to any baseline bivariate distribution function (df) to get a more flexible family of bivariate df's. Through the additional parameters we can fully control the type of the resulting family. This method is applied to yield a new two-parameter extension of the bivariate standard normal distribution, denoted by BSSN. The statistical properties of the BSSN family are studied. Moreover, via a mixture of the BSSN family and the standard bivariate logistic df, we get a more capable family, denoted by FBSSN. Theoretically, each of the marginals of the FBSSN contains all the possible types of df's with respect to the signs of skewness and excess kurtosis. In addition, each possesses very wide range of the indices of skewness and kurtosis. Finally, we compare the families BSSN and FBSSN with some important competitors (i.e., some generalized families of bivariate df's) via real data examples. AMS 2010 Subject Classification: 62-07; 62E10; 62F99.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"13 1\",\"pages\":\"79-87\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2018.79.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.79.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们引入了一种新的方法,将两个形状参数添加到任何基线二元分布函数(df)中,以获得更灵活的二元分布函数族。通过附加参数,我们可以完全控制结果族的类型。应用该方法得到了双变量标准正态分布的一个新的双参数扩展,用BSSN表示。研究了BSSN族的统计性质。此外,通过BSSN族和标准二元逻辑df的混合,我们得到了一个更有能力的族,用FBSSN表示。理论上,FBSSN的每一个边缘都包含了关于偏度和过度峰度的所有可能的df类型。此外,它们的偏度和峰度指标的变化范围也很广。最后,我们通过实际数据实例将BSSN族和FBSSN族与一些重要的竞争对手(即一些广义的二元df族)进行了比较。AMS 2010学科分类:62-07;62 e10汽油;62 f99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Families of Distributions for Modeling Bivariate Data, with Applications
In this study we introduce a new method of adding two shape parameters to any baseline bivariate distribution function (df) to get a more flexible family of bivariate df's. Through the additional parameters we can fully control the type of the resulting family. This method is applied to yield a new two-parameter extension of the bivariate standard normal distribution, denoted by BSSN. The statistical properties of the BSSN family are studied. Moreover, via a mixture of the BSSN family and the standard bivariate logistic df, we get a more capable family, denoted by FBSSN. Theoretically, each of the marginals of the FBSSN contains all the possible types of df's with respect to the signs of skewness and excess kurtosis. In addition, each possesses very wide range of the indices of skewness and kurtosis. Finally, we compare the families BSSN and FBSSN with some important competitors (i.e., some generalized families of bivariate df's) via real data examples. AMS 2010 Subject Classification: 62-07; 62E10; 62F99.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
期刊最新文献
Multivariate Option Pricing with Gaussian Mixture Distributions and Mixed Copulas Stochastic Model for Pricing Normal Bonds when Maturity Periods Cross Over to Pandemic Period Measurable Functional Calculi and Spectral Theory Elements of Formal Probabilistic Mechanics Chlodowsky Type (λ, q)-Bernstein Stancu Operator of Korovkin-Type Approximation Theorem of Rough I-Core of Triple Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1