流化床工艺制备赤铁矿微颗粒及纳米颗粒的机理研究

IF 2.6 4区 材料科学 Q3 ENGINEERING, CHEMICAL KONA Powder and Particle Journal Pub Date : 2020-01-10 DOI:10.14356/kona.2020014
N. Bolay, R. Lakhal, M. Hemati
{"title":"流化床工艺制备赤铁矿微颗粒及纳米颗粒的机理研究","authors":"N. Bolay, R. Lakhal, M. Hemati","doi":"10.14356/kona.2020014","DOIUrl":null,"url":null,"abstract":"A continuous, compact and simple process was developed to synthesize micro- and nanoparticles of iron oxide. The process combines the spraying (pulverization) of an aqueous solution of iron nitrate in a fluidized bed reactor containing coarse and hot glass beads ( T = 200 °C) for the production of solids and a transported bed reactor for calcination ( T = 490 °C). The intermediate product formed in the fluidized bed reactor is 2-line ferrihydrite, while the calcination reactor allows the production of hematite micro- and nanoparticles. These particles are characterized by a narrow size distribution, a mean size of 0.5 μm, a specific surface area of 24 m 2 g –1 and a density of 4499 kg m –3 . Particles are made up of small clusters of crystallites having an average size of 47 nm and a low internal porosity (0.12). The reaction mechanism was studied using a muffle furnace and a lab convective dryer. It was found that several steps are involved leading first to the production of iron nitrate dihydrate after the removal of the solution water, as well as two and then five molecules of water of hydration. After that, the elimination of nitrate leads to the production of ferrihydrite. Finally, ferrihydrite is transformed into hematite due to the removal of residual nitrate and water of hydroxylation.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"91 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Production of Hematite Micro- and Nanoparticles in a Fluidized Bed Process—Mechanism Study\",\"authors\":\"N. Bolay, R. Lakhal, M. Hemati\",\"doi\":\"10.14356/kona.2020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A continuous, compact and simple process was developed to synthesize micro- and nanoparticles of iron oxide. The process combines the spraying (pulverization) of an aqueous solution of iron nitrate in a fluidized bed reactor containing coarse and hot glass beads ( T = 200 °C) for the production of solids and a transported bed reactor for calcination ( T = 490 °C). The intermediate product formed in the fluidized bed reactor is 2-line ferrihydrite, while the calcination reactor allows the production of hematite micro- and nanoparticles. These particles are characterized by a narrow size distribution, a mean size of 0.5 μm, a specific surface area of 24 m 2 g –1 and a density of 4499 kg m –3 . Particles are made up of small clusters of crystallites having an average size of 47 nm and a low internal porosity (0.12). The reaction mechanism was studied using a muffle furnace and a lab convective dryer. It was found that several steps are involved leading first to the production of iron nitrate dihydrate after the removal of the solution water, as well as two and then five molecules of water of hydration. After that, the elimination of nitrate leads to the production of ferrihydrite. Finally, ferrihydrite is transformed into hematite due to the removal of residual nitrate and water of hydroxylation.\",\"PeriodicalId\":17828,\"journal\":{\"name\":\"KONA Powder and Particle Journal\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2020-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KONA Powder and Particle Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14356/kona.2020014\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KONA Powder and Particle Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14356/kona.2020014","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种连续、紧凑、简单的合成氧化铁微粒和纳米颗粒的工艺。该工艺结合了在含有粗粒和热玻璃珠(T = 200°C)的流化床反应器中喷射(粉碎)硝酸铁的溶液,用于生产固体和用于煅烧的输送床反应器(T = 490°C)。在流化床反应器中形成的中间产物是二线水合铁,而煅烧反应器可以生产赤铁矿微颗粒和纳米颗粒。颗粒粒径分布较窄,平均粒径为0.5 μm,比表面积为24 m 2 g -1,密度为4499 kg m -3。颗粒由小簇晶组成,平均尺寸为47 nm,内部孔隙率低(0.12)。利用马弗炉和实验室对流干燥机对反应机理进行了研究。研究发现,在除去溶液水后,首先要经过几个步骤才能产生二水合硝酸铁,以及两分子和五分子的水合水。之后,硝酸盐的消除导致水合铁的产生。最后,水合铁通过去除残余硝酸盐和羟基化水转化为赤铁矿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production of Hematite Micro- and Nanoparticles in a Fluidized Bed Process—Mechanism Study
A continuous, compact and simple process was developed to synthesize micro- and nanoparticles of iron oxide. The process combines the spraying (pulverization) of an aqueous solution of iron nitrate in a fluidized bed reactor containing coarse and hot glass beads ( T = 200 °C) for the production of solids and a transported bed reactor for calcination ( T = 490 °C). The intermediate product formed in the fluidized bed reactor is 2-line ferrihydrite, while the calcination reactor allows the production of hematite micro- and nanoparticles. These particles are characterized by a narrow size distribution, a mean size of 0.5 μm, a specific surface area of 24 m 2 g –1 and a density of 4499 kg m –3 . Particles are made up of small clusters of crystallites having an average size of 47 nm and a low internal porosity (0.12). The reaction mechanism was studied using a muffle furnace and a lab convective dryer. It was found that several steps are involved leading first to the production of iron nitrate dihydrate after the removal of the solution water, as well as two and then five molecules of water of hydration. After that, the elimination of nitrate leads to the production of ferrihydrite. Finally, ferrihydrite is transformed into hematite due to the removal of residual nitrate and water of hydroxylation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
KONA Powder and Particle Journal
KONA Powder and Particle Journal 工程技术-材料科学:综合
CiteScore
8.40
自引率
4.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: KONA publishes papers in the broad field of powder science and technology, ranging from fundamental principles to practical applications. Papers describing technological experience and critical reviews of existing knowledge in special areas are also welcome.
期刊最新文献
Editor’s Preface The 54th Symposium on Powder Technology and Special Lecture for the 30th Anniversary of the Establishment of HPTF The KONA Award 2021 General Information Effects of DEM Parameters and Operating Conditions on Particle Dynamics in a Laboratory Scale Rotating Disc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1