A. R. Reyes, G. H. Corral, Elsa G. Ordoñez Casanova, H. Mandujano, Uzziel Caldiño Herrera
{"title":"低分辨率数字x射线成像探测器的研制与验证","authors":"A. R. Reyes, G. H. Corral, Elsa G. Ordoñez Casanova, H. Mandujano, Uzziel Caldiño Herrera","doi":"10.15415/jnp.2020.72023","DOIUrl":null,"url":null,"abstract":"Digital X-ray detectors are required in different sciences and applications, however many high quality devices are expensive although high-resolution images are not always required. We present an easy way to build a detector capable of forming X-ray digital images and video with a very large area (18×18 cm2). The detector is formed by three main components: scintillator, optics lenses and CCD sensor. Basically, the device converts the X-rays into visible light which is then collected by the CCD sensor. The scintillator is Gadox type, from Carestream®, 18×18 cm2, regular type, lambda 547 nm. The optics lenses are generic, with manual focus and widely visual field. The CCD sensor has a size of 1/3″, 752 × 582 pixels, monochrome, 20 FPS, 12 bits ADC and pixel size of 3.8 μm. With the built detector and an X-ray source, we formed an X-ray imaging detection system to generate digital radiographs of biological or inert objects-examples are given-, as well as real-time X-ray video. Additionally, the spatial resolution limit was measured in terms of Modulation Transfer Function by the method of opaque edge from a lead sheet with a result of 1.1 Lp/mm. Finally using a filter, the focal spot of the X-ray source is measured, resulting in a diameter of 0.9 mm (FWHM).","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"103 1","pages":"181-187"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of an X-ray Imaging Detector for Digital Radiography at Low Resolution\",\"authors\":\"A. R. Reyes, G. H. Corral, Elsa G. Ordoñez Casanova, H. Mandujano, Uzziel Caldiño Herrera\",\"doi\":\"10.15415/jnp.2020.72023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital X-ray detectors are required in different sciences and applications, however many high quality devices are expensive although high-resolution images are not always required. We present an easy way to build a detector capable of forming X-ray digital images and video with a very large area (18×18 cm2). The detector is formed by three main components: scintillator, optics lenses and CCD sensor. Basically, the device converts the X-rays into visible light which is then collected by the CCD sensor. The scintillator is Gadox type, from Carestream®, 18×18 cm2, regular type, lambda 547 nm. The optics lenses are generic, with manual focus and widely visual field. The CCD sensor has a size of 1/3″, 752 × 582 pixels, monochrome, 20 FPS, 12 bits ADC and pixel size of 3.8 μm. With the built detector and an X-ray source, we formed an X-ray imaging detection system to generate digital radiographs of biological or inert objects-examples are given-, as well as real-time X-ray video. Additionally, the spatial resolution limit was measured in terms of Modulation Transfer Function by the method of opaque edge from a lead sheet with a result of 1.1 Lp/mm. Finally using a filter, the focal spot of the X-ray source is measured, resulting in a diameter of 0.9 mm (FWHM).\",\"PeriodicalId\":16534,\"journal\":{\"name\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"volume\":\"103 1\",\"pages\":\"181-187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15415/jnp.2020.72023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/jnp.2020.72023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and Validation of an X-ray Imaging Detector for Digital Radiography at Low Resolution
Digital X-ray detectors are required in different sciences and applications, however many high quality devices are expensive although high-resolution images are not always required. We present an easy way to build a detector capable of forming X-ray digital images and video with a very large area (18×18 cm2). The detector is formed by three main components: scintillator, optics lenses and CCD sensor. Basically, the device converts the X-rays into visible light which is then collected by the CCD sensor. The scintillator is Gadox type, from Carestream®, 18×18 cm2, regular type, lambda 547 nm. The optics lenses are generic, with manual focus and widely visual field. The CCD sensor has a size of 1/3″, 752 × 582 pixels, monochrome, 20 FPS, 12 bits ADC and pixel size of 3.8 μm. With the built detector and an X-ray source, we formed an X-ray imaging detection system to generate digital radiographs of biological or inert objects-examples are given-, as well as real-time X-ray video. Additionally, the spatial resolution limit was measured in terms of Modulation Transfer Function by the method of opaque edge from a lead sheet with a result of 1.1 Lp/mm. Finally using a filter, the focal spot of the X-ray source is measured, resulting in a diameter of 0.9 mm (FWHM).