基于多层神经网络的开关磁阻电机建模

A. C. F. Mamede, R. Camacho, R. Araújo
{"title":"基于多层神经网络的开关磁阻电机建模","authors":"A. C. F. Mamede, R. Camacho, R. Araújo","doi":"10.24084/repqj16.430","DOIUrl":null,"url":null,"abstract":"The work deals with the application of artificial neural networks (ANNs) in the modeling of switched reluctance machines (SRMs). The performance of a SRM is determined by its geometry, materials used and levels of excitation. In this way, this work investigates the influence of the stator and rotor back iron thickness in the performance of SRM. A multilayer neural network is proposed to learn the nonlinear characteristics of the motor. Data of flux linkages and torque are obtained through simulations of finite elements and used for ANN training. The algorithm developed in Octave allows the user to adjust the network parameters. The results presented confirm the feasibility of using ANN to establish a predictive model of SRM performance, thus enabling further investigation in the future.","PeriodicalId":21007,"journal":{"name":"Renewable energy & power quality journal","volume":"14 1","pages":"674-679"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Switched Reluctance Machine Modeling through Multilayer Neural Networks\",\"authors\":\"A. C. F. Mamede, R. Camacho, R. Araújo\",\"doi\":\"10.24084/repqj16.430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work deals with the application of artificial neural networks (ANNs) in the modeling of switched reluctance machines (SRMs). The performance of a SRM is determined by its geometry, materials used and levels of excitation. In this way, this work investigates the influence of the stator and rotor back iron thickness in the performance of SRM. A multilayer neural network is proposed to learn the nonlinear characteristics of the motor. Data of flux linkages and torque are obtained through simulations of finite elements and used for ANN training. The algorithm developed in Octave allows the user to adjust the network parameters. The results presented confirm the feasibility of using ANN to establish a predictive model of SRM performance, thus enabling further investigation in the future.\",\"PeriodicalId\":21007,\"journal\":{\"name\":\"Renewable energy & power quality journal\",\"volume\":\"14 1\",\"pages\":\"674-679\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable energy & power quality journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24084/repqj16.430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable energy & power quality journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24084/repqj16.430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了人工神经网络在开关磁阻电机(SRMs)建模中的应用。SRM的性能取决于它的几何形状、使用的材料和激发水平。通过这种方式,本文研究了定子和转子背铁厚度对SRM性能的影响。提出了一种多层神经网络来学习电机的非线性特性。通过有限元仿真得到磁链和转矩的数据,并将其用于人工神经网络的训练。在Octave中开发的算法允许用户调整网络参数。研究结果证实了利用人工神经网络建立SRM性能预测模型的可行性,从而为未来的进一步研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Switched Reluctance Machine Modeling through Multilayer Neural Networks
The work deals with the application of artificial neural networks (ANNs) in the modeling of switched reluctance machines (SRMs). The performance of a SRM is determined by its geometry, materials used and levels of excitation. In this way, this work investigates the influence of the stator and rotor back iron thickness in the performance of SRM. A multilayer neural network is proposed to learn the nonlinear characteristics of the motor. Data of flux linkages and torque are obtained through simulations of finite elements and used for ANN training. The algorithm developed in Octave allows the user to adjust the network parameters. The results presented confirm the feasibility of using ANN to establish a predictive model of SRM performance, thus enabling further investigation in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A bibliometric study on the nexus of economic growth and renewable energy in Brazil Energy Flows Optimization in a Renewable Energy Community with Storage Systems Integration Effect of cloud transits in a stand-alone solar photovoltaic water pumping system MATLAB® Modeling of a Microgrid: Towards a Vision Based on Entropy Balance Self-Heating Induced Instability of a Non-Linear Inductor in a SMPS: a Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1