加拿大国家铁路公司分布式电力机车分配问题

Camilo Ortiz-Astorquiza, J. Cordeau, Emma Frejinger
{"title":"加拿大国家铁路公司分布式电力机车分配问题","authors":"Camilo Ortiz-Astorquiza, J. Cordeau, Emma Frejinger","doi":"10.1287/trsc.2020.1030","DOIUrl":null,"url":null,"abstract":"Some of the most important optimization problems faced by railway operators arise from the management of their locomotive fleet. In this paper, we study a general version of the locomotive assignment problem encountered at the tactical level by one of the largest railroads in North America: the Canadian National Railway Company (CN). We present a modeling framework with two integer linear programming formulations and contribute to the state of the art by allowing to decide each train's operating mode (distributed power or not) over the whole (weekly) planning horizon without partitioning it into smaller time windows. Given the difficulty to solve the problem, one of the formulations is enhanced through various refinements such as constraint relaxations, preprocessing and fixed cost approximations. We thus achieve a significant reduction in the required computational time to solve instances of realistic size. We also present two versions of a Benders decomposition-based algorithm to obtain feasible solutions. On average, it allows to reduce the associated computational time by two hours. Results from an extensive computational study and a case study with data provided by CN confirm the potential benefits of the model and solution approach.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"7 1","pages":"510-531"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Locomotive Assignment Problem with Distributed Power at the Canadian National Railway Company\",\"authors\":\"Camilo Ortiz-Astorquiza, J. Cordeau, Emma Frejinger\",\"doi\":\"10.1287/trsc.2020.1030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some of the most important optimization problems faced by railway operators arise from the management of their locomotive fleet. In this paper, we study a general version of the locomotive assignment problem encountered at the tactical level by one of the largest railroads in North America: the Canadian National Railway Company (CN). We present a modeling framework with two integer linear programming formulations and contribute to the state of the art by allowing to decide each train's operating mode (distributed power or not) over the whole (weekly) planning horizon without partitioning it into smaller time windows. Given the difficulty to solve the problem, one of the formulations is enhanced through various refinements such as constraint relaxations, preprocessing and fixed cost approximations. We thus achieve a significant reduction in the required computational time to solve instances of realistic size. We also present two versions of a Benders decomposition-based algorithm to obtain feasible solutions. On average, it allows to reduce the associated computational time by two hours. Results from an extensive computational study and a case study with data provided by CN confirm the potential benefits of the model and solution approach.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"7 1\",\"pages\":\"510-531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2020.1030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2020.1030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

铁路运营商面临的一些最重要的优化问题来自机车车队的管理。在本文中,我们研究了北美最大的铁路公司之一:加拿大国家铁路公司(CN)在战术层面遇到的机车分配问题的一般版本。我们提出了一个具有两个整数线性规划公式的建模框架,并通过允许在整个(每周)规划范围内决定每列火车的运行模式(分布式电源或非分布式电源)而不将其划分为更小的时间窗口,从而贡献了最先进的技术。考虑到解决问题的难度,其中一个公式通过约束松弛、预处理和固定成本近似等各种改进来增强。因此,我们实现了所需的计算时间的显著减少,以解决实际大小的实例。我们还提出了两个版本的基于Benders分解的算法来获得可行解。平均而言,它可以将相关的计算时间减少两个小时。广泛的计算研究和使用CN提供的数据的案例研究的结果证实了该模型和解决方案方法的潜在好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Locomotive Assignment Problem with Distributed Power at the Canadian National Railway Company
Some of the most important optimization problems faced by railway operators arise from the management of their locomotive fleet. In this paper, we study a general version of the locomotive assignment problem encountered at the tactical level by one of the largest railroads in North America: the Canadian National Railway Company (CN). We present a modeling framework with two integer linear programming formulations and contribute to the state of the art by allowing to decide each train's operating mode (distributed power or not) over the whole (weekly) planning horizon without partitioning it into smaller time windows. Given the difficulty to solve the problem, one of the formulations is enhanced through various refinements such as constraint relaxations, preprocessing and fixed cost approximations. We thus achieve a significant reduction in the required computational time to solve instances of realistic size. We also present two versions of a Benders decomposition-based algorithm to obtain feasible solutions. On average, it allows to reduce the associated computational time by two hours. Results from an extensive computational study and a case study with data provided by CN confirm the potential benefits of the model and solution approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Air Quality on Housing Location: A Predictive Dynamic Continuum User-Optimal Approach Transportation in the Sharing Economy Scheduling Vehicles with Spatial Conflicts Differentiated Pricing of Shared Mobility Systems Considering Network Effects Using COVID-19 Data on Vaccine Shipments and Wastage to Inform Modeling and Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1