{"title":"节点回归迁移学习在扩展预测中的应用","authors":"Sebastian Mežnar, N. Lavrač, Blaž Škrlj","doi":"10.25088/complexsystems.30.4.457","DOIUrl":null,"url":null,"abstract":"Understanding how information propagates in real-life complex networks yields a better understanding of dynamic processes such as misinformation or epidemic spreading. The recently introduced branch of machine learning methods for learning node representations offers many novel applications, one of them being the task of spreading prediction addressed in this paper. We explore the utility of the state-of-the-art node representation learners when used to assess the effects of spreading from a given node, estimated via extensive simulations. Further, as many real-life networks are topologically similar, we systematically investigate whether the learned models generalize to previously unseen networks, showing that in some cases very good model transfer can be obtained. This paper is one of the first to explore transferability of the learned representations for the task of node regression; we show there exist pairs of networks with similar structure between which the trained models can be transferred (zero-shot) and demonstrate their competitive performance. To our knowledge, this is one of the first attempts to evaluate the utility of zero-shot transfer for the task of node regression.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":"71 1","pages":"457-481"},"PeriodicalIF":0.7000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transfer Learning for Node Regression Applied to Spreading Prediction\",\"authors\":\"Sebastian Mežnar, N. Lavrač, Blaž Škrlj\",\"doi\":\"10.25088/complexsystems.30.4.457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how information propagates in real-life complex networks yields a better understanding of dynamic processes such as misinformation or epidemic spreading. The recently introduced branch of machine learning methods for learning node representations offers many novel applications, one of them being the task of spreading prediction addressed in this paper. We explore the utility of the state-of-the-art node representation learners when used to assess the effects of spreading from a given node, estimated via extensive simulations. Further, as many real-life networks are topologically similar, we systematically investigate whether the learned models generalize to previously unseen networks, showing that in some cases very good model transfer can be obtained. This paper is one of the first to explore transferability of the learned representations for the task of node regression; we show there exist pairs of networks with similar structure between which the trained models can be transferred (zero-shot) and demonstrate their competitive performance. To our knowledge, this is one of the first attempts to evaluate the utility of zero-shot transfer for the task of node regression.\",\"PeriodicalId\":50871,\"journal\":{\"name\":\"Advances in Complex Systems\",\"volume\":\"71 1\",\"pages\":\"457-481\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.25088/complexsystems.30.4.457\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25088/complexsystems.30.4.457","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Transfer Learning for Node Regression Applied to Spreading Prediction
Understanding how information propagates in real-life complex networks yields a better understanding of dynamic processes such as misinformation or epidemic spreading. The recently introduced branch of machine learning methods for learning node representations offers many novel applications, one of them being the task of spreading prediction addressed in this paper. We explore the utility of the state-of-the-art node representation learners when used to assess the effects of spreading from a given node, estimated via extensive simulations. Further, as many real-life networks are topologically similar, we systematically investigate whether the learned models generalize to previously unseen networks, showing that in some cases very good model transfer can be obtained. This paper is one of the first to explore transferability of the learned representations for the task of node regression; we show there exist pairs of networks with similar structure between which the trained models can be transferred (zero-shot) and demonstrate their competitive performance. To our knowledge, this is one of the first attempts to evaluate the utility of zero-shot transfer for the task of node regression.
期刊介绍:
Advances in Complex Systems aims to provide a unique medium of communication for multidisciplinary approaches, either empirical or theoretical, to the study of complex systems. The latter are seen as systems comprised of multiple interacting components, or agents. Nonlinear feedback processes, stochastic influences, specific conditions for the supply of energy, matter, or information may lead to the emergence of new system qualities on the macroscopic scale that cannot be reduced to the dynamics of the agents. Quantitative approaches to the dynamics of complex systems have to consider a broad range of concepts, from analytical tools, statistical methods and computer simulations to distributed problem solving, learning and adaptation. This is an interdisciplinary enterprise.