混合双线性线性(1)模型

Predrag M. Popovic
{"title":"混合双线性线性(1)模型","authors":"Predrag M. Popovic","doi":"10.22190/FUMI200420012P","DOIUrl":null,"url":null,"abstract":"The paper introduces a new autoregressive model of order one for time seriesof counts. The model is comprised of a linear as well as bilinear autoregressive component. These two components are governed by random coefficients. The autoregression is achieved by using the negative binomial thinning operator. The method of moments and the conditional maximum likelihood method are discussed for the parameter estimation. The practicality of the model is presented on a real data set.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"52 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A MIXED BILINEAR INAR(1) MODEL\",\"authors\":\"Predrag M. Popovic\",\"doi\":\"10.22190/FUMI200420012P\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a new autoregressive model of order one for time seriesof counts. The model is comprised of a linear as well as bilinear autoregressive component. These two components are governed by random coefficients. The autoregression is achieved by using the negative binomial thinning operator. The method of moments and the conditional maximum likelihood method are discussed for the parameter estimation. The practicality of the model is presented on a real data set.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI200420012P\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI200420012P","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的一阶自回归计数时间序列模型。该模型由线性和双线性自回归组成。这两个分量由随机系数决定。采用负二项细化算子实现自回归。讨论了矩量法和条件极大似然法的参数估计方法。在实际数据集上验证了该模型的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A MIXED BILINEAR INAR(1) MODEL
The paper introduces a new autoregressive model of order one for time seriesof counts. The model is comprised of a linear as well as bilinear autoregressive component. These two components are governed by random coefficients. The autoregression is achieved by using the negative binomial thinning operator. The method of moments and the conditional maximum likelihood method are discussed for the parameter estimation. The practicality of the model is presented on a real data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
期刊最新文献
FIXED POINT RESULTS FOR (α − β)-ADMISSIBLE ALMOST z-CONTRACTIONS IN METRIC-LIKE SPACE VIA SIMULATION FUNCTION IMPULSIVE STURM-LIOUVILLE PROBLEMS ON TIME SCALES APPLICATION OF FUZZY METRIC ON MANIFOLDS INTUITIONISTIC FUZZY I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY COMPACT OPERATOR EXPONENTIAL GROWTH OF SOLUTIONS FOR A VARIABLE-EXPONENT FOURTH-ORDER VISCOELASTIC EQUATION WITH NONLINEAR BOUNDARY FEEDBACK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1