Simon Rohlmann, Vladislav Mladenov, Christian Mainka, Jörg Schwenk
{"title":"打破规范:PDF认证","authors":"Simon Rohlmann, Vladislav Mladenov, Christian Mainka, Jörg Schwenk","doi":"10.1109/SP40001.2021.00110","DOIUrl":null,"url":null,"abstract":"The Portable Document Format (PDF) is the de-facto standard for document exchange. The PDF specification defines two different types of digital signatures to guarantee the authenticity and integrity of documents: approval signatures and certification signatures. Approval signatures testify one specific state of the PDF document. Their security has been investigated at CCS’19. Certification signatures are more powerful and flexible. They cover more complex workflows, such as signing contracts by multiple parties. To achieve this goal, users can make specific changes to a signed document without invalidating the signature.This paper presents the first comprehensive security evaluation on certification signatures in PDFs. We describe two novel attack classes – Evil Annotation and Sneaky Signature attacks which abuse flaws in the current PDF specification. Both attack classes allow an attacker to significantly alter a certified document’s visible content without raising any warnings. Our practical evaluation shows that an attacker could change the visible content in 15 of 26 viewer applications by using Evil Annotation attacks and in 8 applications using Sneaky Signature by using PDF specification compliant exploits. We improved both attacks’ stealthiness with applications’ implementation issues and found only two applications secure to all attacks. On top, we show how to gain high privileged JavaScript execution in Adobe.We responsibly disclosed these issues and supported the vendors to fix the vulnerabilities. We also propose concrete countermeasures and improvements to the current specification to fix the issues.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"22 1","pages":"1485-1501"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Breaking the Specification: PDF Certification\",\"authors\":\"Simon Rohlmann, Vladislav Mladenov, Christian Mainka, Jörg Schwenk\",\"doi\":\"10.1109/SP40001.2021.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Portable Document Format (PDF) is the de-facto standard for document exchange. The PDF specification defines two different types of digital signatures to guarantee the authenticity and integrity of documents: approval signatures and certification signatures. Approval signatures testify one specific state of the PDF document. Their security has been investigated at CCS’19. Certification signatures are more powerful and flexible. They cover more complex workflows, such as signing contracts by multiple parties. To achieve this goal, users can make specific changes to a signed document without invalidating the signature.This paper presents the first comprehensive security evaluation on certification signatures in PDFs. We describe two novel attack classes – Evil Annotation and Sneaky Signature attacks which abuse flaws in the current PDF specification. Both attack classes allow an attacker to significantly alter a certified document’s visible content without raising any warnings. Our practical evaluation shows that an attacker could change the visible content in 15 of 26 viewer applications by using Evil Annotation attacks and in 8 applications using Sneaky Signature by using PDF specification compliant exploits. We improved both attacks’ stealthiness with applications’ implementation issues and found only two applications secure to all attacks. On top, we show how to gain high privileged JavaScript execution in Adobe.We responsibly disclosed these issues and supported the vendors to fix the vulnerabilities. We also propose concrete countermeasures and improvements to the current specification to fix the issues.\",\"PeriodicalId\":6786,\"journal\":{\"name\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"22 1\",\"pages\":\"1485-1501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40001.2021.00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Portable Document Format (PDF) is the de-facto standard for document exchange. The PDF specification defines two different types of digital signatures to guarantee the authenticity and integrity of documents: approval signatures and certification signatures. Approval signatures testify one specific state of the PDF document. Their security has been investigated at CCS’19. Certification signatures are more powerful and flexible. They cover more complex workflows, such as signing contracts by multiple parties. To achieve this goal, users can make specific changes to a signed document without invalidating the signature.This paper presents the first comprehensive security evaluation on certification signatures in PDFs. We describe two novel attack classes – Evil Annotation and Sneaky Signature attacks which abuse flaws in the current PDF specification. Both attack classes allow an attacker to significantly alter a certified document’s visible content without raising any warnings. Our practical evaluation shows that an attacker could change the visible content in 15 of 26 viewer applications by using Evil Annotation attacks and in 8 applications using Sneaky Signature by using PDF specification compliant exploits. We improved both attacks’ stealthiness with applications’ implementation issues and found only two applications secure to all attacks. On top, we show how to gain high privileged JavaScript execution in Adobe.We responsibly disclosed these issues and supported the vendors to fix the vulnerabilities. We also propose concrete countermeasures and improvements to the current specification to fix the issues.