P. Jenkins, Jennifer Zhao, Heath Vinicombe, Anant Subramanian, Arun Prasad, Atillia Dobi, E. Li, Yunsong Guo
{"title":"搜索引擎优化的自然语言注释","authors":"P. Jenkins, Jennifer Zhao, Heath Vinicombe, Anant Subramanian, Arun Prasad, Atillia Dobi, E. Li, Yunsong Guo","doi":"10.1145/3366423.3380049","DOIUrl":null,"url":null,"abstract":"Understanding content at scale is a difficult but important problem for many platforms. Many previous studies focus on content understanding to optimize engagement with existing users. However, little work studies how to leverage better content understanding to attract new users. In this work, we build a framework for generating natural language content annotations and show how they can be used for search engine optimization. The proposed framework relies on an XGBoost model that labels “pins” with high probability phrases, and a logistic regression layer that learns to rank aggregated annotations for groups of content. The pipeline identifies keywords that are descriptive and contextually meaningful. We perform a large-scale production experiment deployed on the Pinterest platform and show that natural language annotations cause a 1-2% increase in traffic from leading search engines. This increase is statistically significant. Finally, we explore and interpret the characteristics of our annotations framework.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Natural Language Annotations for Search Engine Optimization\",\"authors\":\"P. Jenkins, Jennifer Zhao, Heath Vinicombe, Anant Subramanian, Arun Prasad, Atillia Dobi, E. Li, Yunsong Guo\",\"doi\":\"10.1145/3366423.3380049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding content at scale is a difficult but important problem for many platforms. Many previous studies focus on content understanding to optimize engagement with existing users. However, little work studies how to leverage better content understanding to attract new users. In this work, we build a framework for generating natural language content annotations and show how they can be used for search engine optimization. The proposed framework relies on an XGBoost model that labels “pins” with high probability phrases, and a logistic regression layer that learns to rank aggregated annotations for groups of content. The pipeline identifies keywords that are descriptive and contextually meaningful. We perform a large-scale production experiment deployed on the Pinterest platform and show that natural language annotations cause a 1-2% increase in traffic from leading search engines. This increase is statistically significant. Finally, we explore and interpret the characteristics of our annotations framework.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Natural Language Annotations for Search Engine Optimization
Understanding content at scale is a difficult but important problem for many platforms. Many previous studies focus on content understanding to optimize engagement with existing users. However, little work studies how to leverage better content understanding to attract new users. In this work, we build a framework for generating natural language content annotations and show how they can be used for search engine optimization. The proposed framework relies on an XGBoost model that labels “pins” with high probability phrases, and a logistic regression layer that learns to rank aggregated annotations for groups of content. The pipeline identifies keywords that are descriptive and contextually meaningful. We perform a large-scale production experiment deployed on the Pinterest platform and show that natural language annotations cause a 1-2% increase in traffic from leading search engines. This increase is statistically significant. Finally, we explore and interpret the characteristics of our annotations framework.