欧亚捕牡蛎优化器:新的元启发式算法

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2022-01-01 DOI:10.1515/jisys-2022-0017
A. Salim, Wisam K. Jummar, Farah Maath Jasim, Mohammed S. Yousif
{"title":"欧亚捕牡蛎优化器:新的元启发式算法","authors":"A. Salim, Wisam K. Jummar, Farah Maath Jasim, Mohammed S. Yousif","doi":"10.1515/jisys-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Modern optimisation is increasingly relying on meta-heuristic methods. This study presents a new meta-heuristic optimisation algorithm called Eurasian oystercatcher optimiser (EOO). The EOO algorithm mimics food behaviour of Eurasian oystercatcher (EO) in searching for mussels. In EOO, each bird (solution) in the population acts as a search agent. The EO changes the candidate mussel according to the best solutions to finally eat the best mussel (optimal result). A balance must be achieved among the size, calories, and energy of mussels. The proposed algorithm is benchmarked on 58 test functions of three phases (unimodal, multimodal, and fixed-diminution multimodal) and compared with several important algorithms as follows: particle swarm optimiser, grey wolf optimiser, biogeography based optimisation, gravitational search algorithm, and artificial bee colony. Finally, the results of the test functions prove that the proposed algorithm is able to provide very competitive results in terms of improved exploration and exploitation balances and local optima avoidance.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"107 1","pages":"332 - 344"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Eurasian oystercatcher optimiser: New meta-heuristic algorithm\",\"authors\":\"A. Salim, Wisam K. Jummar, Farah Maath Jasim, Mohammed S. Yousif\",\"doi\":\"10.1515/jisys-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Modern optimisation is increasingly relying on meta-heuristic methods. This study presents a new meta-heuristic optimisation algorithm called Eurasian oystercatcher optimiser (EOO). The EOO algorithm mimics food behaviour of Eurasian oystercatcher (EO) in searching for mussels. In EOO, each bird (solution) in the population acts as a search agent. The EO changes the candidate mussel according to the best solutions to finally eat the best mussel (optimal result). A balance must be achieved among the size, calories, and energy of mussels. The proposed algorithm is benchmarked on 58 test functions of three phases (unimodal, multimodal, and fixed-diminution multimodal) and compared with several important algorithms as follows: particle swarm optimiser, grey wolf optimiser, biogeography based optimisation, gravitational search algorithm, and artificial bee colony. Finally, the results of the test functions prove that the proposed algorithm is able to provide very competitive results in terms of improved exploration and exploitation balances and local optima avoidance.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"107 1\",\"pages\":\"332 - 344\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6

摘要

现代优化越来越依赖于元启发式方法。本研究提出了一种新的元启发式优化算法,称为欧亚捕牡蛎优化器(EOO)。EOO算法模拟了欧亚捕牡蛎者寻找贻贝的食物行为。在EOO中,种群中的每只鸟(解决方案)都充当一个搜索代理。EO根据最佳解决方案改变候选贻贝,最终吃到最好的贻贝(最佳结果)。贻贝的大小、卡路里和能量必须达到平衡。该算法对三个阶段(单峰、多峰和定缩多峰)的58个测试函数进行了基准测试,并与粒子群优化算法、灰狼优化算法、基于生物地理的优化算法、引力搜索算法和人工蜂群算法进行了比较。最后,测试函数的结果证明,该算法在改进的勘探开发平衡和局部最优避免方面能够提供非常有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eurasian oystercatcher optimiser: New meta-heuristic algorithm
Abstract Modern optimisation is increasingly relying on meta-heuristic methods. This study presents a new meta-heuristic optimisation algorithm called Eurasian oystercatcher optimiser (EOO). The EOO algorithm mimics food behaviour of Eurasian oystercatcher (EO) in searching for mussels. In EOO, each bird (solution) in the population acts as a search agent. The EO changes the candidate mussel according to the best solutions to finally eat the best mussel (optimal result). A balance must be achieved among the size, calories, and energy of mussels. The proposed algorithm is benchmarked on 58 test functions of three phases (unimodal, multimodal, and fixed-diminution multimodal) and compared with several important algorithms as follows: particle swarm optimiser, grey wolf optimiser, biogeography based optimisation, gravitational search algorithm, and artificial bee colony. Finally, the results of the test functions prove that the proposed algorithm is able to provide very competitive results in terms of improved exploration and exploitation balances and local optima avoidance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
A study on predicting crime rates through machine learning and data mining using text A multiorder feature tracking and explanation strategy for explainable deep learning Intelligent control system for industrial robots based on multi-source data fusion Reinforcement learning with Gaussian process regression using variational free energy A novel distance vector hop localization method for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1