{"title":"评论克莱布施 1857 年和 1859 年关于在流体力学中使用汉密尔顿方法的论文","authors":"Gérard Grimberg, Emanuele Tassi","doi":"10.1140/epjh/s13129-021-00014-9","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper is a companion of two translated articles by Alfred Clebsch, titled “On a general transformation of the hydrodynamical equations” and “On the integration of the hydrodynamical equations” (https://doi.org/10.1140/epjh/s13129-021-00015-8, https://doi.org/10.1140/epjh/s13129-021-00016-7). The originals were published in the “Journal für die reine and angewandte Mathematik” (1857 and 1859). Here we provide a detailed critical reading of these articles, which analyzes methods, and results of Clebsch. In the first place, we try to elucidate the algebraic calculus used by Clebsch in several parts of the two articles that we believe to be the most significant ones. We also provide some proofs that Clebsch did not find necessary to explain, in particular concerning the variational principles stated in his two articles and the use of the method of Jacobi’s Last Multiplier. When possible, we reformulate the original expressions by Clebsch in the language of vector analysis, which should be more familiar to the reader. The connections of the results and methods by Clebsch with his scientific context, in particular with the works of Carl Jacobi, are briefly discussed. We emphasize how the representations of the velocity vector field conceived by Clebsch in his two articles, allow for a variational formulation of hydrodynamics equations in the steady and unsteady case. In particular, we stress that what is nowadays known as the “Clebsch variables”, permit to give a canonical Hamiltonian formulation of the equations of fluid mechanics. We also list a number of further developments of the theory initiated by Clebsch, which had an impact on presently active areas of research, within such fields as hydrodynamics and plasma physics.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"46 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on Clebsch’s 1857 and 1859 papers on using Hamiltonian methods in hydrodynamics\",\"authors\":\"Gérard Grimberg, Emanuele Tassi\",\"doi\":\"10.1140/epjh/s13129-021-00014-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present paper is a companion of two translated articles by Alfred Clebsch, titled “On a general transformation of the hydrodynamical equations” and “On the integration of the hydrodynamical equations” (https://doi.org/10.1140/epjh/s13129-021-00015-8, https://doi.org/10.1140/epjh/s13129-021-00016-7). The originals were published in the “Journal für die reine and angewandte Mathematik” (1857 and 1859). Here we provide a detailed critical reading of these articles, which analyzes methods, and results of Clebsch. In the first place, we try to elucidate the algebraic calculus used by Clebsch in several parts of the two articles that we believe to be the most significant ones. We also provide some proofs that Clebsch did not find necessary to explain, in particular concerning the variational principles stated in his two articles and the use of the method of Jacobi’s Last Multiplier. When possible, we reformulate the original expressions by Clebsch in the language of vector analysis, which should be more familiar to the reader. The connections of the results and methods by Clebsch with his scientific context, in particular with the works of Carl Jacobi, are briefly discussed. We emphasize how the representations of the velocity vector field conceived by Clebsch in his two articles, allow for a variational formulation of hydrodynamics equations in the steady and unsteady case. In particular, we stress that what is nowadays known as the “Clebsch variables”, permit to give a canonical Hamiltonian formulation of the equations of fluid mechanics. We also list a number of further developments of the theory initiated by Clebsch, which had an impact on presently active areas of research, within such fields as hydrodynamics and plasma physics.</p></div>\",\"PeriodicalId\":791,\"journal\":{\"name\":\"The European Physical Journal H\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal H\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjh/s13129-021-00014-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-021-00014-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
本文是阿尔弗雷德-克莱布施(Alfred Clebsch)两篇译文的配套文章,分别题为 "论流体力学方程的一般变换 "和 "论流体力学方程的积分" (https://doi.org/10.1140/epjh/s13129-021-00015-8, https://doi.org/10.1140/epjh/s13129-021-00016-7)。这两篇论文的原稿发表在《Journal für die reine and angewandte Mathematik》(1857 年和 1859 年)上。在此,我们对这些文章进行了详细的批判性解读,分析了克莱布施的方法和成果。首先,我们试图阐明克莱布施在我们认为最重要的两篇文章的几个部分中使用的代数微积分。我们还提供了一些克莱布施认为没有必要解释的证明,特别是关于他在两篇文章中阐述的变分原理和雅可比末乘法的使用。在可能的情况下,我们用读者更熟悉的向量分析语言重新表述了克莱布施的原始表达式。我们简要讨论了克莱布施的结果和方法与其科学背景的联系,特别是与卡尔-雅可比著作的联系。我们强调了克莱布施在其两篇文章中构想的速度矢量场表示法如何允许在稳定和非稳定情况下对流体力学方程进行变分表述。我们特别强调,如今被称为 "克莱布施变量 "的变量允许对流体力学方程进行典型的哈密顿表述。我们还列举了克莱布施理论的一些进一步发展,这些发展对目前活跃的研究领域,如流体力学和等离子体物理学等领域产生了影响。
Comment on Clebsch’s 1857 and 1859 papers on using Hamiltonian methods in hydrodynamics
The present paper is a companion of two translated articles by Alfred Clebsch, titled “On a general transformation of the hydrodynamical equations” and “On the integration of the hydrodynamical equations” (https://doi.org/10.1140/epjh/s13129-021-00015-8, https://doi.org/10.1140/epjh/s13129-021-00016-7). The originals were published in the “Journal für die reine and angewandte Mathematik” (1857 and 1859). Here we provide a detailed critical reading of these articles, which analyzes methods, and results of Clebsch. In the first place, we try to elucidate the algebraic calculus used by Clebsch in several parts of the two articles that we believe to be the most significant ones. We also provide some proofs that Clebsch did not find necessary to explain, in particular concerning the variational principles stated in his two articles and the use of the method of Jacobi’s Last Multiplier. When possible, we reformulate the original expressions by Clebsch in the language of vector analysis, which should be more familiar to the reader. The connections of the results and methods by Clebsch with his scientific context, in particular with the works of Carl Jacobi, are briefly discussed. We emphasize how the representations of the velocity vector field conceived by Clebsch in his two articles, allow for a variational formulation of hydrodynamics equations in the steady and unsteady case. In particular, we stress that what is nowadays known as the “Clebsch variables”, permit to give a canonical Hamiltonian formulation of the equations of fluid mechanics. We also list a number of further developments of the theory initiated by Clebsch, which had an impact on presently active areas of research, within such fields as hydrodynamics and plasma physics.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.