{"title":"硬实时流水线多处理器系统周期性电源管理中的应用","authors":"Gang Chen, Kai Huang, C. Buckl, A. Knoll","doi":"10.1145/2699865","DOIUrl":null,"url":null,"abstract":"Pipelined computing is a promising paradigm for embedded system design. Designing a power management policy to reduce the power consumption of a pipelined system with nondeterministic workload is, however, nontrivial. In this article, we study the problem of energy minimization for coarse-grained pipelined systems under hard real-time constraints and propose new approaches based on an inverse use of the pay-burst-only-once principle. We formulate the problem by means of the resource demands of individual pipeline stages and propose two new approaches, a quadratic programming-based approach and fast heuristic, to solve the problem. In the quadratic programming approach, the problem is transformed into a standard quadratic programming with box constraint and then solved by a standard quadratic programming solver. Observing the problem is NP-hard, the fast heuristic is designed to solve the problem more efficiently. Our approach is scalable with respect to the numbers of pipeline stages. Simulation results using real-life applications are presented to demonstrate the effectiveness of our methods.","PeriodicalId":7063,"journal":{"name":"ACM Trans. Design Autom. Electr. Syst.","volume":"70 1","pages":"26:1-26:27"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Applying Pay-Burst-Only-Once Principle for Periodic Power Management in Hard Real-Time Pipelined Multiprocessor Systems\",\"authors\":\"Gang Chen, Kai Huang, C. Buckl, A. Knoll\",\"doi\":\"10.1145/2699865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pipelined computing is a promising paradigm for embedded system design. Designing a power management policy to reduce the power consumption of a pipelined system with nondeterministic workload is, however, nontrivial. In this article, we study the problem of energy minimization for coarse-grained pipelined systems under hard real-time constraints and propose new approaches based on an inverse use of the pay-burst-only-once principle. We formulate the problem by means of the resource demands of individual pipeline stages and propose two new approaches, a quadratic programming-based approach and fast heuristic, to solve the problem. In the quadratic programming approach, the problem is transformed into a standard quadratic programming with box constraint and then solved by a standard quadratic programming solver. Observing the problem is NP-hard, the fast heuristic is designed to solve the problem more efficiently. Our approach is scalable with respect to the numbers of pipeline stages. Simulation results using real-life applications are presented to demonstrate the effectiveness of our methods.\",\"PeriodicalId\":7063,\"journal\":{\"name\":\"ACM Trans. Design Autom. Electr. Syst.\",\"volume\":\"70 1\",\"pages\":\"26:1-26:27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Design Autom. Electr. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2699865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Design Autom. Electr. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2699865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying Pay-Burst-Only-Once Principle for Periodic Power Management in Hard Real-Time Pipelined Multiprocessor Systems
Pipelined computing is a promising paradigm for embedded system design. Designing a power management policy to reduce the power consumption of a pipelined system with nondeterministic workload is, however, nontrivial. In this article, we study the problem of energy minimization for coarse-grained pipelined systems under hard real-time constraints and propose new approaches based on an inverse use of the pay-burst-only-once principle. We formulate the problem by means of the resource demands of individual pipeline stages and propose two new approaches, a quadratic programming-based approach and fast heuristic, to solve the problem. In the quadratic programming approach, the problem is transformed into a standard quadratic programming with box constraint and then solved by a standard quadratic programming solver. Observing the problem is NP-hard, the fast heuristic is designed to solve the problem more efficiently. Our approach is scalable with respect to the numbers of pipeline stages. Simulation results using real-life applications are presented to demonstrate the effectiveness of our methods.