{"title":"LTE/LTE- a网络中M2M通信的混合随机接入协议的机遇","authors":"H. Althumali, M. Othman, N. Noordin, Z. Hanapi","doi":"10.3233/jhs-210672","DOIUrl":null,"url":null,"abstract":"Machine-to-machine (M2M) communications on Long-term evolution (LTE) networks form a substantial part for the Internet-of-things (IoT). The random access procedure is the first step for M2M devices to access network resources. Many researchers have attempted to improve the efficiency of the random access procedure. This work revisits the performance of the hybrid random access protocols which combine congestion control techniques with collision resolution techniques. In particular, we investigate two hybrid protocols. The first one combines the pre-backoff (PBO) with tree random access (TRA), and the second one combines dynamic access barring (DAB) with TRA. The probability analysis is presented for both protocols. The performance is evaluated based on the access success rate, the mean throughput, the mean delay, the collision rate and the mean retransmissions. The simulation results show that the hybrid protocols achieve the highest success rate and throughput with moderate delay and low collision rates with a lower mean number of retransmissions compared to three benchmarks that apply either a congestion control or a collision resolution. The opportunities of future developments of hybrid protocols are listed at the end of this paper to highlight the issues that could be investigated to improve the performance of hybrid random access protocols.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"44 1","pages":"361-380"},"PeriodicalIF":0.7000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Opportunities of hybrid random access protocols for M2M communications in LTE/LTE-A networks\",\"authors\":\"H. Althumali, M. Othman, N. Noordin, Z. Hanapi\",\"doi\":\"10.3233/jhs-210672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-to-machine (M2M) communications on Long-term evolution (LTE) networks form a substantial part for the Internet-of-things (IoT). The random access procedure is the first step for M2M devices to access network resources. Many researchers have attempted to improve the efficiency of the random access procedure. This work revisits the performance of the hybrid random access protocols which combine congestion control techniques with collision resolution techniques. In particular, we investigate two hybrid protocols. The first one combines the pre-backoff (PBO) with tree random access (TRA), and the second one combines dynamic access barring (DAB) with TRA. The probability analysis is presented for both protocols. The performance is evaluated based on the access success rate, the mean throughput, the mean delay, the collision rate and the mean retransmissions. The simulation results show that the hybrid protocols achieve the highest success rate and throughput with moderate delay and low collision rates with a lower mean number of retransmissions compared to three benchmarks that apply either a congestion control or a collision resolution. The opportunities of future developments of hybrid protocols are listed at the end of this paper to highlight the issues that could be investigated to improve the performance of hybrid random access protocols.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"44 1\",\"pages\":\"361-380\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jhs-210672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-210672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Opportunities of hybrid random access protocols for M2M communications in LTE/LTE-A networks
Machine-to-machine (M2M) communications on Long-term evolution (LTE) networks form a substantial part for the Internet-of-things (IoT). The random access procedure is the first step for M2M devices to access network resources. Many researchers have attempted to improve the efficiency of the random access procedure. This work revisits the performance of the hybrid random access protocols which combine congestion control techniques with collision resolution techniques. In particular, we investigate two hybrid protocols. The first one combines the pre-backoff (PBO) with tree random access (TRA), and the second one combines dynamic access barring (DAB) with TRA. The probability analysis is presented for both protocols. The performance is evaluated based on the access success rate, the mean throughput, the mean delay, the collision rate and the mean retransmissions. The simulation results show that the hybrid protocols achieve the highest success rate and throughput with moderate delay and low collision rates with a lower mean number of retransmissions compared to three benchmarks that apply either a congestion control or a collision resolution. The opportunities of future developments of hybrid protocols are listed at the end of this paper to highlight the issues that could be investigated to improve the performance of hybrid random access protocols.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.