基于归一化互信息特征选择和并行量子遗传算法的入侵检测

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2022-01-01 DOI:10.4018/ijswis.307324
Zhang Ling, Zhang Jia Hao
{"title":"基于归一化互信息特征选择和并行量子遗传算法的入侵检测","authors":"Zhang Ling, Zhang Jia Hao","doi":"10.4018/ijswis.307324","DOIUrl":null,"url":null,"abstract":"This paper presents a detection algorithm using normalized mutual information feature selection and cooperative evolution of multiple operators based on adaptive parallel quantum genetic algorithm (NMIFS MOP- AQGA). The proposed algorithm is to address the problems that the intrusion detection system (IDS) has lower the detection speed, less adaptability and lower detection accuracy. In order to achieve an effective reduction for high-dimensional feature data, the NMIFS method is used to select the best feature combination. The best features are sent to the MOP- AQGA classifier for learning and training, and the intrusion detectors are obtained. The data are fed into the detection algorithm to ultimately generate accurate detection results. The experimental results on real abnormal data demonstrate that the NMIFS MOP- AQGA method has higher detection accuracy, lower false negative rate and higher adaptive performance than the existing detection methods, especially for small samples sets.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"96 1","pages":"1-24"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Intrusion Detection Using Normalized Mutual Information Feature Selection and Parallel Quantum Genetic Algorithm\",\"authors\":\"Zhang Ling, Zhang Jia Hao\",\"doi\":\"10.4018/ijswis.307324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a detection algorithm using normalized mutual information feature selection and cooperative evolution of multiple operators based on adaptive parallel quantum genetic algorithm (NMIFS MOP- AQGA). The proposed algorithm is to address the problems that the intrusion detection system (IDS) has lower the detection speed, less adaptability and lower detection accuracy. In order to achieve an effective reduction for high-dimensional feature data, the NMIFS method is used to select the best feature combination. The best features are sent to the MOP- AQGA classifier for learning and training, and the intrusion detectors are obtained. The data are fed into the detection algorithm to ultimately generate accurate detection results. The experimental results on real abnormal data demonstrate that the NMIFS MOP- AQGA method has higher detection accuracy, lower false negative rate and higher adaptive performance than the existing detection methods, especially for small samples sets.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"96 1\",\"pages\":\"1-24\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.307324\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.307324","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于自适应并行量子遗传算法(NMIFS MOP- AQGA)的基于归一化互信息特征选择和多算子协同进化的检测算法。该算法是针对入侵检测系统检测速度慢、适应性差、检测精度低等问题而提出的。为了实现对高维特征数据的有效约简,采用NMIFS方法选择最佳特征组合。将最佳特征发送给MOP- AQGA分类器进行学习和训练,得到入侵检测器。这些数据被输入到检测算法中,最终产生准确的检测结果。在真实异常数据上的实验结果表明,与现有的检测方法相比,NMIFS MOP- AQGA方法具有更高的检测精度、更低的假阴性率和更高的自适应性能,特别是对于小样本集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrusion Detection Using Normalized Mutual Information Feature Selection and Parallel Quantum Genetic Algorithm
This paper presents a detection algorithm using normalized mutual information feature selection and cooperative evolution of multiple operators based on adaptive parallel quantum genetic algorithm (NMIFS MOP- AQGA). The proposed algorithm is to address the problems that the intrusion detection system (IDS) has lower the detection speed, less adaptability and lower detection accuracy. In order to achieve an effective reduction for high-dimensional feature data, the NMIFS method is used to select the best feature combination. The best features are sent to the MOP- AQGA classifier for learning and training, and the intrusion detectors are obtained. The data are fed into the detection algorithm to ultimately generate accurate detection results. The experimental results on real abnormal data demonstrate that the NMIFS MOP- AQGA method has higher detection accuracy, lower false negative rate and higher adaptive performance than the existing detection methods, especially for small samples sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1