{"title":"锂锂聚变蒸发研究","authors":"H. Aksakal, E. Yıldız","doi":"10.1515/kern-2022-0104","DOIUrl":null,"url":null,"abstract":"Abstract In this study we have explored 6Li + 7Li fusion evaporation reactions cross sections dependencies on both nuclear level density and various spin combination effects. The reaction cross section was calculated in the energy range of 0.1–16 MeV projectile of 6Li on the fixed target of 7Li. The excited compound nucleus (13C) can decay into various channels, and its decay rate in any given channel is proportional to the available phase space, i.e., the corresponding level density of it which is explained in the present study. In the present study, LISE++, PACE4, NRV and GEMINI codes were used to determine cross section of evaporation residues cross sections of 13C.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"238 1","pages":"231 - 239"},"PeriodicalIF":0.4000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium–lithium fusion evaporation research\",\"authors\":\"H. Aksakal, E. Yıldız\",\"doi\":\"10.1515/kern-2022-0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study we have explored 6Li + 7Li fusion evaporation reactions cross sections dependencies on both nuclear level density and various spin combination effects. The reaction cross section was calculated in the energy range of 0.1–16 MeV projectile of 6Li on the fixed target of 7Li. The excited compound nucleus (13C) can decay into various channels, and its decay rate in any given channel is proportional to the available phase space, i.e., the corresponding level density of it which is explained in the present study. In the present study, LISE++, PACE4, NRV and GEMINI codes were used to determine cross section of evaporation residues cross sections of 13C.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"238 1\",\"pages\":\"231 - 239\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2022-0104\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Abstract In this study we have explored 6Li + 7Li fusion evaporation reactions cross sections dependencies on both nuclear level density and various spin combination effects. The reaction cross section was calculated in the energy range of 0.1–16 MeV projectile of 6Li on the fixed target of 7Li. The excited compound nucleus (13C) can decay into various channels, and its decay rate in any given channel is proportional to the available phase space, i.e., the corresponding level density of it which is explained in the present study. In the present study, LISE++, PACE4, NRV and GEMINI codes were used to determine cross section of evaporation residues cross sections of 13C.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).