提高雪崩能力的高k介电辅助4H-SiC超级结器件沟槽端接

IF 1 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Pub Date : 2023-06-25 DOI:10.1109/COMPEL52896.2023.10221057
Qi Zhu
{"title":"提高雪崩能力的高k介电辅助4H-SiC超级结器件沟槽端接","authors":"Qi Zhu","doi":"10.1109/COMPEL52896.2023.10221057","DOIUrl":null,"url":null,"abstract":"The conventional trench termination for the 4HSiC sidewall-implanted Super Junction device has relatively low avalanche capability and the devices can fail destructively under abnormal operating conditions. In this paper, a novel high-k dielectric assisted trench termination is proposed. The high-k dielectric TiO2 is incorporated into the SiO2-filled trench. TCAD simulations are conducted to validate the efficacy of the proposed termination. The results show that with the proposed termination, the peak electric field is pushed to the edge of the TiO2 region, preventing breakdown at the corners of the active region edge; at the same time, the leakage current flows uniformly from the active region, thus improving the avalanche current; in addition, the addition of TiO2 to the terminator does not reduce the breakdown voltage. Moreover, the dimensions of the TiO2 are optimized in terms of the maximum current density. By taking the dielectric strength into consideration, the optimum depth and length of the TiO2 region are found to be 0.6μm and 2μm, respectively.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"38 1","pages":"1-6"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-k Dielectric Assisted Trench Termination of the 4H-SiC Super Junction Device for Improved Avalanche Capability\",\"authors\":\"Qi Zhu\",\"doi\":\"10.1109/COMPEL52896.2023.10221057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional trench termination for the 4HSiC sidewall-implanted Super Junction device has relatively low avalanche capability and the devices can fail destructively under abnormal operating conditions. In this paper, a novel high-k dielectric assisted trench termination is proposed. The high-k dielectric TiO2 is incorporated into the SiO2-filled trench. TCAD simulations are conducted to validate the efficacy of the proposed termination. The results show that with the proposed termination, the peak electric field is pushed to the edge of the TiO2 region, preventing breakdown at the corners of the active region edge; at the same time, the leakage current flows uniformly from the active region, thus improving the avalanche current; in addition, the addition of TiO2 to the terminator does not reduce the breakdown voltage. Moreover, the dimensions of the TiO2 are optimized in terms of the maximum current density. By taking the dielectric strength into consideration, the optimum depth and length of the TiO2 region are found to be 0.6μm and 2μm, respectively.\",\"PeriodicalId\":55233,\"journal\":{\"name\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"volume\":\"38 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEL52896.2023.10221057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

4HSiC侧壁植入超级结器件的传统沟槽端接具有较低的雪崩能力,在异常工作条件下器件会发生破坏性失效。本文提出了一种新型的高k介电辅助沟槽终端。将高k电介质TiO2掺入到填充sio2的沟槽中。通过TCAD仿真验证了所提出的终止方案的有效性。结果表明:采用所提出的终止方式,峰值电场被推至TiO2区边缘,防止了活性区边缘的角击穿;同时,泄漏电流均匀地从有源区流出,从而改善了雪崩电流;此外,在终结端加入TiO2并不会降低击穿电压。此外,根据最大电流密度对TiO2的尺寸进行了优化。考虑介电强度,TiO2区域的最佳深度为0.6μm,长度为2μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-k Dielectric Assisted Trench Termination of the 4H-SiC Super Junction Device for Improved Avalanche Capability
The conventional trench termination for the 4HSiC sidewall-implanted Super Junction device has relatively low avalanche capability and the devices can fail destructively under abnormal operating conditions. In this paper, a novel high-k dielectric assisted trench termination is proposed. The high-k dielectric TiO2 is incorporated into the SiO2-filled trench. TCAD simulations are conducted to validate the efficacy of the proposed termination. The results show that with the proposed termination, the peak electric field is pushed to the edge of the TiO2 region, preventing breakdown at the corners of the active region edge; at the same time, the leakage current flows uniformly from the active region, thus improving the avalanche current; in addition, the addition of TiO2 to the terminator does not reduce the breakdown voltage. Moreover, the dimensions of the TiO2 are optimized in terms of the maximum current density. By taking the dielectric strength into consideration, the optimum depth and length of the TiO2 region are found to be 0.6μm and 2μm, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
124
审稿时长
4.2 months
期刊介绍: COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.
期刊最新文献
Refining the physical description of charge trapping and detrapping in a transport model for dielectrics using an optimization algorithm Asymmetric air gap fault detection in linear permanent magnet Vernier machines Development and comparison of double-stator memory machines with parallel hybrid magnets Micromagnetics and multiscale hysteresis simulations of permanent magnets Optimization design of insulation structure of multiwinding high-frequency transformer based on response surface method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1