基于MAX - MIN蚁群算法的应急物流路径优化研究

T. Fei, H. Ren, Liyi Zhang, Jin Zhang, Qian Li
{"title":"基于MAX - MIN蚁群算法的应急物流路径优化研究","authors":"T. Fei, H. Ren, Liyi Zhang, Jin Zhang, Qian Li","doi":"10.1109/ICNC.2011.6022514","DOIUrl":null,"url":null,"abstract":"After disasters the emergency logistics distribution path selection problem is the key to the ways to ensure relief work go on wheels. In this article, MAX-MIN ant colony algorithm is used to solve the problem about post-disaster emergency logistics distribution path selection so that the emergency relief supplies will be sending to the disaster area more efficiently. The MAX - MIN ant colony algorithm, which has been proved by simulation, possesses advantage on solving the problem about post-disaster emergency logistics distribution path selection.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"102 1","pages":"1211-1215"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The research about emergency logistics path optimization based on MAX - MIN ant colony algorithm\",\"authors\":\"T. Fei, H. Ren, Liyi Zhang, Jin Zhang, Qian Li\",\"doi\":\"10.1109/ICNC.2011.6022514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After disasters the emergency logistics distribution path selection problem is the key to the ways to ensure relief work go on wheels. In this article, MAX-MIN ant colony algorithm is used to solve the problem about post-disaster emergency logistics distribution path selection so that the emergency relief supplies will be sending to the disaster area more efficiently. The MAX - MIN ant colony algorithm, which has been proved by simulation, possesses advantage on solving the problem about post-disaster emergency logistics distribution path selection.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"102 1\",\"pages\":\"1211-1215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

灾后应急物流配送路径选择问题是确保救灾工作顺利进行的关键。本文采用MAX-MIN蚁群算法解决灾后应急物流配送路径选择问题,使应急救援物资更高效地送达灾区。经仿真验证,MAX - MIN蚁群算法在解决灾后应急物流配送路径选择问题上具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The research about emergency logistics path optimization based on MAX - MIN ant colony algorithm
After disasters the emergency logistics distribution path selection problem is the key to the ways to ensure relief work go on wheels. In this article, MAX-MIN ant colony algorithm is used to solve the problem about post-disaster emergency logistics distribution path selection so that the emergency relief supplies will be sending to the disaster area more efficiently. The MAX - MIN ant colony algorithm, which has been proved by simulation, possesses advantage on solving the problem about post-disaster emergency logistics distribution path selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1