基于全参考显著性的三维网格质量评价指标

Anass Nouri, C. Charrier, O. Lézoray
{"title":"基于全参考显著性的三维网格质量评价指标","authors":"Anass Nouri, C. Charrier, O. Lézoray","doi":"10.1109/ICIP.2016.7532509","DOIUrl":null,"url":null,"abstract":"We propose in this paper a novel perceptual viewpoint-independent metric for the quality assessment of 3D meshes. This full-reference objective metric relies on the method proposed by Wang et al. [1] that compares the structural informations between an original signal and a distorted one. In order to extract the structural informations of a 3D mesh, we use a multi-scale visual saliency map on which we compute the local statistics. The experimental results attest the strong correlation between the objective scores provided by our metric and the human judgments. Also, comparisons with the state-of-the-art prove that our metric is very competitive.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"29 1","pages":"1007-1011"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Full-reference saliency-based 3D mesh quality assessment index\",\"authors\":\"Anass Nouri, C. Charrier, O. Lézoray\",\"doi\":\"10.1109/ICIP.2016.7532509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose in this paper a novel perceptual viewpoint-independent metric for the quality assessment of 3D meshes. This full-reference objective metric relies on the method proposed by Wang et al. [1] that compares the structural informations between an original signal and a distorted one. In order to extract the structural informations of a 3D mesh, we use a multi-scale visual saliency map on which we compute the local statistics. The experimental results attest the strong correlation between the objective scores provided by our metric and the human judgments. Also, comparisons with the state-of-the-art prove that our metric is very competitive.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"29 1\",\"pages\":\"1007-1011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种新的独立于感知视点的三维网格质量评价方法。这种全参考客观度量依赖于Wang等人提出的方法,该方法比较原始信号和失真信号之间的结构信息。为了提取三维网格的结构信息,我们使用了一个多尺度的视觉显著性图,并在其上计算局部统计量。实验结果证明,我们的度量提供的客观分数与人类判断之间存在很强的相关性。此外,与最新技术的比较证明我们的指标非常具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full-reference saliency-based 3D mesh quality assessment index
We propose in this paper a novel perceptual viewpoint-independent metric for the quality assessment of 3D meshes. This full-reference objective metric relies on the method proposed by Wang et al. [1] that compares the structural informations between an original signal and a distorted one. In order to extract the structural informations of a 3D mesh, we use a multi-scale visual saliency map on which we compute the local statistics. The experimental results attest the strong correlation between the objective scores provided by our metric and the human judgments. Also, comparisons with the state-of-the-art prove that our metric is very competitive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1