基于模差的zuck -256初始化新密码分析

IF 1.7 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING IACR Transactions on Symmetric Cryptology Pub Date : 2022-09-09 DOI:10.46586/tosc.v2022.i3.152-190
Fukang Liu, W. Meier, Santanu Sarkar, Gaoli Wang, Ryoma Ito, Takanori Isobe
{"title":"基于模差的zuck -256初始化新密码分析","authors":"Fukang Liu, W. Meier, Santanu Sarkar, Gaoli Wang, Ryoma Ito, Takanori Isobe","doi":"10.46586/tosc.v2022.i3.152-190","DOIUrl":null,"url":null,"abstract":"ZUC-256 is a stream cipher designed for 5G applications by the ZUC team. Together with AES-256 and SNOW-V, it is currently being under evaluation for standardized algorithms in 5G mobile telecommunications by Security Algorithms Group of Experts (SAGE). A notable feature of the round update function of ZUC-256 is that many operations are defined over different fields, which significantly increases the difficulty to analyze the algorithm.As a main contribution, with the tools of the modular difference, signed difference and XOR difference, we develop new techniques to carefully control the interactions between these operations defined over different fields. At first glance, our techniques are somewhat similar to those developed by Wang et al. for the MD-SHA hash family. However, as ZUC-256 is quite different from the MD-SHA hash family and its round function is much more complex, we are indeed dealing with different problems and overcoming new obstacles.As main results, by utilizing complex input differences, we can present the first distinguishing attacks on 31 out of 33 rounds of ZUC-256 and 30 out of 33 rounds of the new version of ZUC-256 called ZUC-256-v2 with low time and data complexities, respectively. These attacks target the initialization phase and work in the related-key model with weak keys. Moreover, with a novel IV-correcting technique, we show how to efficiently recover at least 16 key bits for 15-round ZUC-256 and 14-round ZUC-256-v2 in the related-key setting, respectively. It is unpredictable whether our attacks can be further extended to more rounds with more advanced techniques. Based on the current attacks, we believe that the full 33 initialization rounds provide marginal security.","PeriodicalId":37077,"journal":{"name":"IACR Transactions on Symmetric Cryptology","volume":"12 1","pages":"152-190"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Cryptanalysis of ZUC-256 Initialization Using Modular Differences\",\"authors\":\"Fukang Liu, W. Meier, Santanu Sarkar, Gaoli Wang, Ryoma Ito, Takanori Isobe\",\"doi\":\"10.46586/tosc.v2022.i3.152-190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ZUC-256 is a stream cipher designed for 5G applications by the ZUC team. Together with AES-256 and SNOW-V, it is currently being under evaluation for standardized algorithms in 5G mobile telecommunications by Security Algorithms Group of Experts (SAGE). A notable feature of the round update function of ZUC-256 is that many operations are defined over different fields, which significantly increases the difficulty to analyze the algorithm.As a main contribution, with the tools of the modular difference, signed difference and XOR difference, we develop new techniques to carefully control the interactions between these operations defined over different fields. At first glance, our techniques are somewhat similar to those developed by Wang et al. for the MD-SHA hash family. However, as ZUC-256 is quite different from the MD-SHA hash family and its round function is much more complex, we are indeed dealing with different problems and overcoming new obstacles.As main results, by utilizing complex input differences, we can present the first distinguishing attacks on 31 out of 33 rounds of ZUC-256 and 30 out of 33 rounds of the new version of ZUC-256 called ZUC-256-v2 with low time and data complexities, respectively. These attacks target the initialization phase and work in the related-key model with weak keys. Moreover, with a novel IV-correcting technique, we show how to efficiently recover at least 16 key bits for 15-round ZUC-256 and 14-round ZUC-256-v2 in the related-key setting, respectively. It is unpredictable whether our attacks can be further extended to more rounds with more advanced techniques. Based on the current attacks, we believe that the full 33 initialization rounds provide marginal security.\",\"PeriodicalId\":37077,\"journal\":{\"name\":\"IACR Transactions on Symmetric Cryptology\",\"volume\":\"12 1\",\"pages\":\"152-190\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Transactions on Symmetric Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tosc.v2022.i3.152-190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Transactions on Symmetric Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tosc.v2022.i3.152-190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

ZUC-256是由ZUC团队为5G应用设计的流密码。与AES-256和SNOW-V一起,安全算法专家组(SAGE)目前正在评估5G移动通信的标准化算法。zuck -256的轮更新功能的一个显著特点是在不同的字段上定义了许多操作,这大大增加了算法分析的难度。作为主要的贡献,我们利用模差、符号差和异或差的工具,开发了新的技术来仔细控制这些在不同领域定义的操作之间的相互作用。乍一看,我们的技术与Wang等人为MD-SHA散列家族开发的技术有些相似。然而,由于祖克-256与MD-SHA哈希家族有很大的不同,它的round函数要复杂得多,我们确实在处理不同的问题,克服新的障碍。主要结果是,通过利用复杂的输入差异,我们可以在33轮祖克-256中的31轮和33轮新版本的祖克-256-v2中分别以低时间和低数据复杂性提出第一次区分攻击。这些攻击针对初始化阶段,并在具有弱密钥的相关密钥模型中工作。此外,通过一种新的iv校正技术,我们展示了如何在相关密钥设置中分别为15轮zuck -256和14轮zuck -256-v2有效地恢复至少16个密钥位。我们的攻击能否以更先进的技术进一步扩展到更多回合,这是不可预测的。基于目前的攻击,我们认为完整的33个初始化回合提供了边际安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Cryptanalysis of ZUC-256 Initialization Using Modular Differences
ZUC-256 is a stream cipher designed for 5G applications by the ZUC team. Together with AES-256 and SNOW-V, it is currently being under evaluation for standardized algorithms in 5G mobile telecommunications by Security Algorithms Group of Experts (SAGE). A notable feature of the round update function of ZUC-256 is that many operations are defined over different fields, which significantly increases the difficulty to analyze the algorithm.As a main contribution, with the tools of the modular difference, signed difference and XOR difference, we develop new techniques to carefully control the interactions between these operations defined over different fields. At first glance, our techniques are somewhat similar to those developed by Wang et al. for the MD-SHA hash family. However, as ZUC-256 is quite different from the MD-SHA hash family and its round function is much more complex, we are indeed dealing with different problems and overcoming new obstacles.As main results, by utilizing complex input differences, we can present the first distinguishing attacks on 31 out of 33 rounds of ZUC-256 and 30 out of 33 rounds of the new version of ZUC-256 called ZUC-256-v2 with low time and data complexities, respectively. These attacks target the initialization phase and work in the related-key model with weak keys. Moreover, with a novel IV-correcting technique, we show how to efficiently recover at least 16 key bits for 15-round ZUC-256 and 14-round ZUC-256-v2 in the related-key setting, respectively. It is unpredictable whether our attacks can be further extended to more rounds with more advanced techniques. Based on the current attacks, we believe that the full 33 initialization rounds provide marginal security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IACR Transactions on Symmetric Cryptology
IACR Transactions on Symmetric Cryptology Mathematics-Applied Mathematics
CiteScore
5.50
自引率
22.90%
发文量
37
期刊最新文献
On Large Tweaks in Tweakable Even-Mansour with Linear Tweak and Key Mixing Revisiting Yoyo Tricks on AES Key Committing Security of AEZ and More Related-Key Differential Analysis of the AES Propagation of Subspaces in Primitives with Monomial Sboxes: Applications to Rescue and Variants of the AES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1