执行器故障下飞机自动着舰的模糊神经容错控制方法

Hai-Jun Rong, N. Sundararajan
{"title":"执行器故障下飞机自动着舰的模糊神经容错控制方法","authors":"Hai-Jun Rong, N. Sundararajan","doi":"10.1109/CISDA.2009.5356559","DOIUrl":null,"url":null,"abstract":"In the paper, two fuzzy-neuro control schemes are presented for an aircraft automatic landing problem under the failures of stuck control surfaces and severe winds. The scheme incorporates a fuzzy-neuro controller which augments an existing conventional controller called Baseline Trajectory Following Controller (BTFC). Two fuzzy-neuro controllers have been designed using the recently proposed fuzzy-neuro algorithms named Sequential Adaptive Fuzzy Inference System (SAFIS) and Online Sequential Fuzzy Extreme Learning Machine (OS-Fuzzy-ELM) and a detailed performance comparison has been made. For this study, the following fault scenarios have been considered: i) Single fault of either aileron or elevator stuck at certain deflections and ii) Double fault cases where one aileron and one elevator at the same or opposite direction are stuck at different deflections. The simulation studies indicate that the OS-Fuzzy-ELM achieves better fault-tolerant capabilities compared with SAFIS.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"157 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy-neuro fault-tolerant control schemes for aircraft autolanding under actuator failures\",\"authors\":\"Hai-Jun Rong, N. Sundararajan\",\"doi\":\"10.1109/CISDA.2009.5356559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, two fuzzy-neuro control schemes are presented for an aircraft automatic landing problem under the failures of stuck control surfaces and severe winds. The scheme incorporates a fuzzy-neuro controller which augments an existing conventional controller called Baseline Trajectory Following Controller (BTFC). Two fuzzy-neuro controllers have been designed using the recently proposed fuzzy-neuro algorithms named Sequential Adaptive Fuzzy Inference System (SAFIS) and Online Sequential Fuzzy Extreme Learning Machine (OS-Fuzzy-ELM) and a detailed performance comparison has been made. For this study, the following fault scenarios have been considered: i) Single fault of either aileron or elevator stuck at certain deflections and ii) Double fault cases where one aileron and one elevator at the same or opposite direction are stuck at different deflections. The simulation studies indicate that the OS-Fuzzy-ELM achieves better fault-tolerant capabilities compared with SAFIS.\",\"PeriodicalId\":6407,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"volume\":\"157 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2009.5356559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对某型飞机在控制面卡滞和大风条件下的自动着陆问题,提出了两种模糊神经控制方案。该方案结合了模糊神经控制器,增强了现有的基线轨迹跟踪控制器(BTFC)。利用最近提出的模糊神经算法,设计了两个模糊神经控制器,分别是顺序自适应模糊推理系统(SAFIS)和在线顺序模糊极限学习机(OS-Fuzzy-ELM),并进行了详细的性能比较。本研究考虑了以下两种故障情况:1)副翼或升降舵处于某一挠度的单故障;2)同一方向或相反方向的副翼和升降舵处于不同挠度的双故障。仿真研究表明,与SAFIS相比,OS-Fuzzy-ELM具有更好的容错能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy-neuro fault-tolerant control schemes for aircraft autolanding under actuator failures
In the paper, two fuzzy-neuro control schemes are presented for an aircraft automatic landing problem under the failures of stuck control surfaces and severe winds. The scheme incorporates a fuzzy-neuro controller which augments an existing conventional controller called Baseline Trajectory Following Controller (BTFC). Two fuzzy-neuro controllers have been designed using the recently proposed fuzzy-neuro algorithms named Sequential Adaptive Fuzzy Inference System (SAFIS) and Online Sequential Fuzzy Extreme Learning Machine (OS-Fuzzy-ELM) and a detailed performance comparison has been made. For this study, the following fault scenarios have been considered: i) Single fault of either aileron or elevator stuck at certain deflections and ii) Double fault cases where one aileron and one elevator at the same or opposite direction are stuck at different deflections. The simulation studies indicate that the OS-Fuzzy-ELM achieves better fault-tolerant capabilities compared with SAFIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1