超声深度成像的硬件和算法

Ivan Dokmanić, I. Tashev
{"title":"超声深度成像的硬件和算法","authors":"Ivan Dokmanić, I. Tashev","doi":"10.1109/ICASSP.2014.6854897","DOIUrl":null,"url":null,"abstract":"Depth imaging is commonly based on light. For example, LIDAR and Kinect use infrared light, while stereo cameras use visible light. These systems require hardware operating at high sampling frequencies, precise calibration, and they dissipate significant power. In this paper, we investigate the potential of ultrasound for image and depth acquisition, with applications to human-computer interaction and skeletal tracking in mind. We use a loudspeaker array and a microphone array to sense the scene. We discuss a technique for offline loudspeaker beamforming (commonly used for microphone beamforming) which enables us to significantly increase the frame rate. Further, we propose a sound-source-localization-based method for computing the depth image, giving a substantial improvement over the näıve time-of-flight approach. We designed inexpensive hardware with eight elements per array to obtain both the depth and the intensity images. Even with this limited number of transducers we obtain promising experimental results.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"19 1","pages":"6702-6706"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hardware and algorithms for ultrasonic depth imaging\",\"authors\":\"Ivan Dokmanić, I. Tashev\",\"doi\":\"10.1109/ICASSP.2014.6854897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth imaging is commonly based on light. For example, LIDAR and Kinect use infrared light, while stereo cameras use visible light. These systems require hardware operating at high sampling frequencies, precise calibration, and they dissipate significant power. In this paper, we investigate the potential of ultrasound for image and depth acquisition, with applications to human-computer interaction and skeletal tracking in mind. We use a loudspeaker array and a microphone array to sense the scene. We discuss a technique for offline loudspeaker beamforming (commonly used for microphone beamforming) which enables us to significantly increase the frame rate. Further, we propose a sound-source-localization-based method for computing the depth image, giving a substantial improvement over the näıve time-of-flight approach. We designed inexpensive hardware with eight elements per array to obtain both the depth and the intensity images. Even with this limited number of transducers we obtain promising experimental results.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"19 1\",\"pages\":\"6702-6706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

深度成像通常基于光。例如,激光雷达和Kinect使用红外光,而立体摄像机使用可见光。这些系统需要硬件在高采样频率下工作,精确校准,并且它们消耗大量功率。在本文中,我们研究了超声在图像和深度采集方面的潜力,并将其应用于人机交互和骨骼跟踪。我们使用扬声器阵列和麦克风阵列来感知现场。我们讨论了一种离线扬声器波束形成技术(通常用于麦克风波束形成),使我们能够显着提高帧率。此外,我们提出了一种基于声源定位的深度图像计算方法,与näıve飞行时间方法相比有了实质性的改进。我们设计了价格低廉的硬件,每个阵列有8个元素,以获得深度和强度图像。即使换能器数量有限,我们也获得了有希望的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware and algorithms for ultrasonic depth imaging
Depth imaging is commonly based on light. For example, LIDAR and Kinect use infrared light, while stereo cameras use visible light. These systems require hardware operating at high sampling frequencies, precise calibration, and they dissipate significant power. In this paper, we investigate the potential of ultrasound for image and depth acquisition, with applications to human-computer interaction and skeletal tracking in mind. We use a loudspeaker array and a microphone array to sense the scene. We discuss a technique for offline loudspeaker beamforming (commonly used for microphone beamforming) which enables us to significantly increase the frame rate. Further, we propose a sound-source-localization-based method for computing the depth image, giving a substantial improvement over the näıve time-of-flight approach. We designed inexpensive hardware with eight elements per array to obtain both the depth and the intensity images. Even with this limited number of transducers we obtain promising experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multichannel detection of an unknown rank-one signal with uncalibrated receivers Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem On the convergence of average consensus with generalized metropolis-hasting weights A network of HF surface wave radars for maritime surveillance: Preliminary results in the German Bight Mobile real-time arousal detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1