{"title":"腰椎间盘损伤:机制和干预选择","authors":"Jim F. Schilling","doi":"10.24985/ijass.2021.33.2.140","DOIUrl":null,"url":null,"abstract":"Low back pain is prevalent in sport and the lumbar disc is a pain generator. Conservative care of these physically demanding patients is not consistent as outcome data has not established optimal strategies. Investigating disc injury mechanisms using experimental models will contribute to the creation of treatment strategies that will take into effect movements to avoid and minimize to reduce unwanted strain on the injured tissues throughout the recovery process. Additionally, how disc tissue acquires nutrition would help provide insight into activities that may facilitate the ability of disc tissue to sustain health and promote optimal healing. Rotational forces and compression in trunk-flexed positions may inflict injury to the annulus and endplate structures. Activity to facilitate nutrients through the endplate into the nucleus of the disc and restriction of exasperating movements may be effective in returning athletes to their desired levels of performance efficiently. The purpose of this review is to inquire possible disc injury mechanisms and how they occur in sport. It will also address recommendations for treatment interventions based on disc healing and metabolism evidence.","PeriodicalId":93448,"journal":{"name":"International journal of applied sports sciences : IJASS","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lumbar Disc Injury: Mechanisms and Intervention Options\",\"authors\":\"Jim F. Schilling\",\"doi\":\"10.24985/ijass.2021.33.2.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low back pain is prevalent in sport and the lumbar disc is a pain generator. Conservative care of these physically demanding patients is not consistent as outcome data has not established optimal strategies. Investigating disc injury mechanisms using experimental models will contribute to the creation of treatment strategies that will take into effect movements to avoid and minimize to reduce unwanted strain on the injured tissues throughout the recovery process. Additionally, how disc tissue acquires nutrition would help provide insight into activities that may facilitate the ability of disc tissue to sustain health and promote optimal healing. Rotational forces and compression in trunk-flexed positions may inflict injury to the annulus and endplate structures. Activity to facilitate nutrients through the endplate into the nucleus of the disc and restriction of exasperating movements may be effective in returning athletes to their desired levels of performance efficiently. The purpose of this review is to inquire possible disc injury mechanisms and how they occur in sport. It will also address recommendations for treatment interventions based on disc healing and metabolism evidence.\",\"PeriodicalId\":93448,\"journal\":{\"name\":\"International journal of applied sports sciences : IJASS\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied sports sciences : IJASS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24985/ijass.2021.33.2.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied sports sciences : IJASS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24985/ijass.2021.33.2.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lumbar Disc Injury: Mechanisms and Intervention Options
Low back pain is prevalent in sport and the lumbar disc is a pain generator. Conservative care of these physically demanding patients is not consistent as outcome data has not established optimal strategies. Investigating disc injury mechanisms using experimental models will contribute to the creation of treatment strategies that will take into effect movements to avoid and minimize to reduce unwanted strain on the injured tissues throughout the recovery process. Additionally, how disc tissue acquires nutrition would help provide insight into activities that may facilitate the ability of disc tissue to sustain health and promote optimal healing. Rotational forces and compression in trunk-flexed positions may inflict injury to the annulus and endplate structures. Activity to facilitate nutrients through the endplate into the nucleus of the disc and restriction of exasperating movements may be effective in returning athletes to their desired levels of performance efficiently. The purpose of this review is to inquire possible disc injury mechanisms and how they occur in sport. It will also address recommendations for treatment interventions based on disc healing and metabolism evidence.