用固定化硅石从稀水溶液中回收挥发性溶质

Mark T. Holtzapple, Kathryn L. Flores, Russell F. Brown
{"title":"用固定化硅石从稀水溶液中回收挥发性溶质","authors":"Mark T. Holtzapple,&nbsp;Kathryn L. Flores,&nbsp;Russell F. Brown","doi":"10.1016/0956-9618(94)80026-X","DOIUrl":null,"url":null,"abstract":"<div><p>A silicalite/polyethylene mixture was sintered to the exterior of a heat exchanger tube allowing regeneration by steam or hot water, rather than by inefficient, hot stripping gases. Ethanol, acetone, and butanol were adsorbed onto the silicalite until a final bulk concentration of 4 g/L was obtained. Single-step desorption would enrich ethanol 5.2 times, 1-butanol 9.3 times, and acetone 10.1 times. In an attempt to increase the product concentration even more, the silicalite was regenerated using “temperature-programmed desorption,” where the water was selectively removed at a lower temperature and the solute was selectively removed at a higher temperature. The high-temperature desorption enriched ethanol up to 11.1 times, 1-butanol 4.44 times, and acetone 22.1 times, but at the expense of lower solute recovery. Temperature-programmed desorption was able to significantly enrich the product compared to single-step desorption except for butanol, for which higher regeneration temperatures were required.</p></div>","PeriodicalId":101160,"journal":{"name":"Separations Technology","volume":"4 4","pages":"Pages 230-238"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-9618(94)80026-X","citationCount":"8","resultStr":"{\"title\":\"Recovery of volatile solutes from dilute aqueous solutions using immobilized silicalite\",\"authors\":\"Mark T. Holtzapple,&nbsp;Kathryn L. Flores,&nbsp;Russell F. Brown\",\"doi\":\"10.1016/0956-9618(94)80026-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A silicalite/polyethylene mixture was sintered to the exterior of a heat exchanger tube allowing regeneration by steam or hot water, rather than by inefficient, hot stripping gases. Ethanol, acetone, and butanol were adsorbed onto the silicalite until a final bulk concentration of 4 g/L was obtained. Single-step desorption would enrich ethanol 5.2 times, 1-butanol 9.3 times, and acetone 10.1 times. In an attempt to increase the product concentration even more, the silicalite was regenerated using “temperature-programmed desorption,” where the water was selectively removed at a lower temperature and the solute was selectively removed at a higher temperature. The high-temperature desorption enriched ethanol up to 11.1 times, 1-butanol 4.44 times, and acetone 22.1 times, but at the expense of lower solute recovery. Temperature-programmed desorption was able to significantly enrich the product compared to single-step desorption except for butanol, for which higher regeneration temperatures were required.</p></div>\",\"PeriodicalId\":101160,\"journal\":{\"name\":\"Separations Technology\",\"volume\":\"4 4\",\"pages\":\"Pages 230-238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0956-9618(94)80026-X\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/095696189480026X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/095696189480026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

硅石/聚乙烯混合物烧结到热交换器管的外部,允许蒸汽或热水再生,而不是低效的热汽提气体。乙醇、丙酮和丁醇被吸附到硅石上,直到最终体积浓度为4 g/L。一步解吸可富集乙醇5.2倍,1-丁醇9.3倍,丙酮10.1倍。为了进一步提高产品浓度,硅石采用“温度程序解吸”再生,即在较低温度下选择性地去除水,在较高温度下选择性地去除溶质。高温解吸可使乙醇富集11.1倍,丁醇富集4.44倍,丙酮富集22.1倍,但溶质回收率较低。与单步脱附相比,程序升温脱附能显著富集产物,但对再生温度要求较高的丁醇除外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recovery of volatile solutes from dilute aqueous solutions using immobilized silicalite

A silicalite/polyethylene mixture was sintered to the exterior of a heat exchanger tube allowing regeneration by steam or hot water, rather than by inefficient, hot stripping gases. Ethanol, acetone, and butanol were adsorbed onto the silicalite until a final bulk concentration of 4 g/L was obtained. Single-step desorption would enrich ethanol 5.2 times, 1-butanol 9.3 times, and acetone 10.1 times. In an attempt to increase the product concentration even more, the silicalite was regenerated using “temperature-programmed desorption,” where the water was selectively removed at a lower temperature and the solute was selectively removed at a higher temperature. The high-temperature desorption enriched ethanol up to 11.1 times, 1-butanol 4.44 times, and acetone 22.1 times, but at the expense of lower solute recovery. Temperature-programmed desorption was able to significantly enrich the product compared to single-step desorption except for butanol, for which higher regeneration temperatures were required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Membrane Pervaporation Affinity Chromatography Monoclonal Antibodies Publisher's note Volume contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1