{"title":"基于遗传算法的支持向量回归特征选择与参数优化","authors":"Lei Li, Yang Duan","doi":"10.1109/ICNC.2011.6022110","DOIUrl":null,"url":null,"abstract":"The regression analysis is a method in mathematical statistics to solve many practical problem. Support Vector Regression (SVR) is an effective method for resolving regression problem. However, the traditional SVR impose many of the limitations, the SVR parameters need optimizing, but there is not a mature theoretic for choosing the parameters of SVR, which causes much discommodity to the appliance of SVR. This paper proposes and investigates the use of a genetic algorithm approach for simultaneously select an optimal feature subset and optimize SVR parameters.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"779 1","pages":"335-339"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A GA-based feature selection and parameters optimization for support vector regression\",\"authors\":\"Lei Li, Yang Duan\",\"doi\":\"10.1109/ICNC.2011.6022110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regression analysis is a method in mathematical statistics to solve many practical problem. Support Vector Regression (SVR) is an effective method for resolving regression problem. However, the traditional SVR impose many of the limitations, the SVR parameters need optimizing, but there is not a mature theoretic for choosing the parameters of SVR, which causes much discommodity to the appliance of SVR. This paper proposes and investigates the use of a genetic algorithm approach for simultaneously select an optimal feature subset and optimize SVR parameters.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"779 1\",\"pages\":\"335-339\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

回归分析是数理统计中解决许多实际问题的一种方法。支持向量回归(SVR)是解决回归问题的有效方法。然而,传统的支持向量回归算法存在许多局限性,支持向量回归算法的参数需要优化,而对于支持向量回归算法的参数选择又没有成熟的理论,这给支持向量回归算法的应用带来了很大的不便。本文提出并研究了一种同时选择最优特征子集和优化SVR参数的遗传算法方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A GA-based feature selection and parameters optimization for support vector regression
The regression analysis is a method in mathematical statistics to solve many practical problem. Support Vector Regression (SVR) is an effective method for resolving regression problem. However, the traditional SVR impose many of the limitations, the SVR parameters need optimizing, but there is not a mature theoretic for choosing the parameters of SVR, which causes much discommodity to the appliance of SVR. This paper proposes and investigates the use of a genetic algorithm approach for simultaneously select an optimal feature subset and optimize SVR parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1