M. Link, D. Entekhabi, T. Jagdhuber, P. Ferrazzoli, L. Guerriero, M. Baur, R. Ludwig
{"title":"利用Tor Vergata散射和发射模型模拟作物L/L波段和C/L波段主动式微波共变","authors":"M. Link, D. Entekhabi, T. Jagdhuber, P. Ferrazzoli, L. Guerriero, M. Baur, R. Ludwig","doi":"10.1109/IGARSS.2017.8127913","DOIUrl":null,"url":null,"abstract":"The NASA Soil Moisture Active Passive (SMAP) mission aims to disaggregate L-band microwave brightness temperatures (∼40 km2) with finer resolution radar backscatter (1–3 km2) to obtain an intermediate resolution soil moisture product. The disaggregation is based on a linear functional relationship between backscatter and emissivity microwave observations that is captured by a covariation parameter β. Since SMAP's L-Band radar has stopped operations in July 2015, the substitution of Sentinel 1's C-Band radar for an operational soil moisture product is in preparation. However, while multiple studies have provided understanding of active-passive covariation for the L/L-Band case, little is known about the C/L-Band case. We utilize the Tor Vergata discrete backscatter and emission model to simulate growing wheat and corn stands and calculate the covariation parameter β for the L/L-Band and C/L-Band case. The study aims to provide insights into the strength, temporal dynamics and underlying scattering mechanisms of active-passive covariation for different vegetation types and frequency combinations. Our results indicate that for the C/L-Band case, vegetation cover limitations are generally more severe, and different β-dynamics and underlying scattering mechanisms are observed with respect to the L/L-Band case.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"43 1","pages":"4143-4146"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulating L/L-band and C/L-band active-passive microwave covariation of crops with the Tor Vergata scattering and emission model for a SMAP-Sentinel 1 combination\",\"authors\":\"M. Link, D. Entekhabi, T. Jagdhuber, P. Ferrazzoli, L. Guerriero, M. Baur, R. Ludwig\",\"doi\":\"10.1109/IGARSS.2017.8127913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The NASA Soil Moisture Active Passive (SMAP) mission aims to disaggregate L-band microwave brightness temperatures (∼40 km2) with finer resolution radar backscatter (1–3 km2) to obtain an intermediate resolution soil moisture product. The disaggregation is based on a linear functional relationship between backscatter and emissivity microwave observations that is captured by a covariation parameter β. Since SMAP's L-Band radar has stopped operations in July 2015, the substitution of Sentinel 1's C-Band radar for an operational soil moisture product is in preparation. However, while multiple studies have provided understanding of active-passive covariation for the L/L-Band case, little is known about the C/L-Band case. We utilize the Tor Vergata discrete backscatter and emission model to simulate growing wheat and corn stands and calculate the covariation parameter β for the L/L-Band and C/L-Band case. The study aims to provide insights into the strength, temporal dynamics and underlying scattering mechanisms of active-passive covariation for different vegetation types and frequency combinations. Our results indicate that for the C/L-Band case, vegetation cover limitations are generally more severe, and different β-dynamics and underlying scattering mechanisms are observed with respect to the L/L-Band case.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"43 1\",\"pages\":\"4143-4146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2017.8127913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8127913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulating L/L-band and C/L-band active-passive microwave covariation of crops with the Tor Vergata scattering and emission model for a SMAP-Sentinel 1 combination
The NASA Soil Moisture Active Passive (SMAP) mission aims to disaggregate L-band microwave brightness temperatures (∼40 km2) with finer resolution radar backscatter (1–3 km2) to obtain an intermediate resolution soil moisture product. The disaggregation is based on a linear functional relationship between backscatter and emissivity microwave observations that is captured by a covariation parameter β. Since SMAP's L-Band radar has stopped operations in July 2015, the substitution of Sentinel 1's C-Band radar for an operational soil moisture product is in preparation. However, while multiple studies have provided understanding of active-passive covariation for the L/L-Band case, little is known about the C/L-Band case. We utilize the Tor Vergata discrete backscatter and emission model to simulate growing wheat and corn stands and calculate the covariation parameter β for the L/L-Band and C/L-Band case. The study aims to provide insights into the strength, temporal dynamics and underlying scattering mechanisms of active-passive covariation for different vegetation types and frequency combinations. Our results indicate that for the C/L-Band case, vegetation cover limitations are generally more severe, and different β-dynamics and underlying scattering mechanisms are observed with respect to the L/L-Band case.