使用阈值接受加速图像特征描述符匹配

Savinu T. Vijay, P.N. Poumami
{"title":"使用阈值接受加速图像特征描述符匹配","authors":"Savinu T. Vijay, P.N. Poumami","doi":"10.1109/WISPNET.2018.8538461","DOIUrl":null,"url":null,"abstract":"The process of matching two visual descriptions of images is a major task in Computer Vision. This matching is generally done using Exhaustive search (Brute-Force) and Nearest Neighbor search which has been proved computationally expensive in some cases. This paper proposes a heuristic method to perform feature descriptor matching. The heuristic approach applied here works based on a combinatorial optimization algorithm called Threshold Accepting. The experiments performed suggest that the proposed algorithm can produce better results within a minimum number of iterations than existing algorithms.","PeriodicalId":6858,"journal":{"name":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","volume":"45 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerated Feature Descriptor Matching in Images Using Threshold Accepting\",\"authors\":\"Savinu T. Vijay, P.N. Poumami\",\"doi\":\"10.1109/WISPNET.2018.8538461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of matching two visual descriptions of images is a major task in Computer Vision. This matching is generally done using Exhaustive search (Brute-Force) and Nearest Neighbor search which has been proved computationally expensive in some cases. This paper proposes a heuristic method to perform feature descriptor matching. The heuristic approach applied here works based on a combinatorial optimization algorithm called Threshold Accepting. The experiments performed suggest that the proposed algorithm can produce better results within a minimum number of iterations than existing algorithms.\",\"PeriodicalId\":6858,\"journal\":{\"name\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"volume\":\"45 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISPNET.2018.8538461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISPNET.2018.8538461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像的两个视觉描述的匹配过程是计算机视觉中的一个主要任务。这种匹配通常使用穷举搜索(蛮力)和最近邻搜索来完成,这在某些情况下被证明是计算昂贵的。本文提出了一种启发式的特征描述符匹配方法。这里应用的启发式方法基于一种称为阈值接受的组合优化算法。实验结果表明,与现有算法相比,该算法可以在最少的迭代次数内产生更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated Feature Descriptor Matching in Images Using Threshold Accepting
The process of matching two visual descriptions of images is a major task in Computer Vision. This matching is generally done using Exhaustive search (Brute-Force) and Nearest Neighbor search which has been proved computationally expensive in some cases. This paper proposes a heuristic method to perform feature descriptor matching. The heuristic approach applied here works based on a combinatorial optimization algorithm called Threshold Accepting. The experiments performed suggest that the proposed algorithm can produce better results within a minimum number of iterations than existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Reinforcement Learning for the Capacitated Vehicle Routing Problem with Soft Time Window Integrated Interference Solutions Between 5G and Satellite Systems Modulation Recognition Method of MAPSK Signal Artificial Intelligence Routing Method in Wireless Sensor Network for Sewage Treatment Monitoring Electromagnetically Induced Transparency in a Coupled NV Spin-Mechanical Resonator System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1