在脱氧中性磷酸盐溶液中,空气在铁上形成的氧化膜自发溶解的机理

Hidetaka Konno, Masato Kawai, Masaichi Nagayama
{"title":"在脱氧中性磷酸盐溶液中,空气在铁上形成的氧化膜自发溶解的机理","authors":"Hidetaka Konno,&nbsp;Masato Kawai,&nbsp;Masaichi Nagayama","doi":"10.1016/0376-4583(85)90076-7","DOIUrl":null,"url":null,"abstract":"<div><p>Pure iron was oxidized in air at room temperature for 3–14 days and was then immersed in a deaerated 0.1 mol l<sup>-1</sup> phosphate solution at pH 7.0. The corrosion potential <em>E</em><sub>corr</sub> and the rate of dissolution of the oxide were measured as functions of the immersion time. It is proposed that the oxide film formed in air, which consists of an outer γ-FeOOH layer and an inner Fe<sub>3</sub>O<sub>4</sub> layer, dissolves according to the following cell reactions: an outer cathodic reaction <em>γ</em>-<em>FeOOH</em>+<em>H</em><sub>2</sub>PO<sub>4</sub><sup>-</sup>+3H<sup>+</sup>+e→FeH<sub>2</sub>PO<sub>4</sub><sup>+</sup>+2H<sub>2</sub>O with <em>E</em>°=1.049 V, an inner cathodic reaction <em>Fe</em><sub>3</sub>O<sub>4</sub>+3H<sub>2</sub>PO<sub>4</sub><sup>-</sup>+8H<sup>+</sup>+2e→3FeH<sub>2</sub>PO<sub>4</sub><sup>+</sup>+4H<sub>2</sub>O with <em>E</em>°=1.177 V, and the anodic reactions <em>Fe</em>+2<em>H</em><sub>2</sub>O→Fe(OH)<sub>2</sub>+2H<sup>+</sup>+2e with <em>E</em>°=-0.104 V and/or 3<em>Fe</em>+4<em>H</em><sub>2</sub>O→Fe<sub>3</sub>O<sub>4</sub>+8H<sup>+</sup>+8e with <em>E</em>°=-0.085 V in which the cathodic reaction determines <em>E</em><sub>corr</sub>. The cathodic reaction occurs at the oxide-solution interface by accepting electrons transported through the oxide, and the anodic reaction occurs at the metal-oxide interface to form oxide by reacting with OH<sup>-</sup> and/or O<sup>2-</sup> ions migrating through the oxide layer. Thus the proposed mechanism is rather different from the local action cell model. After the dissolution of the oxide film, the iron dissolves according to the following cell reactions: <em>Fe</em>+<em>H</em><sub>2</sub>PO<sub>4</sub><sup>-</sup>→FeH<sub>2</sub>PO<sub>4</sub><sup>+</sup>+2e with <em>E</em>°=-0.505 V and 2<em>H</em><sup>+</sup>+2e→H<sub>2</sub> with <em>E</em>°=O V, where the anodic reaction determines <em>E</em><sub>corr</sub>.</p></div>","PeriodicalId":22037,"journal":{"name":"Surface Technology","volume":"24 3","pages":"Pages 259-271"},"PeriodicalIF":0.0000,"publicationDate":"1985-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0376-4583(85)90076-7","citationCount":"10","resultStr":"{\"title\":\"The mechanism of spontaneous dissolution of the air-formed oxide film on iron in a deaerated neutral phosphate solution\",\"authors\":\"Hidetaka Konno,&nbsp;Masato Kawai,&nbsp;Masaichi Nagayama\",\"doi\":\"10.1016/0376-4583(85)90076-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pure iron was oxidized in air at room temperature for 3–14 days and was then immersed in a deaerated 0.1 mol l<sup>-1</sup> phosphate solution at pH 7.0. The corrosion potential <em>E</em><sub>corr</sub> and the rate of dissolution of the oxide were measured as functions of the immersion time. It is proposed that the oxide film formed in air, which consists of an outer γ-FeOOH layer and an inner Fe<sub>3</sub>O<sub>4</sub> layer, dissolves according to the following cell reactions: an outer cathodic reaction <em>γ</em>-<em>FeOOH</em>+<em>H</em><sub>2</sub>PO<sub>4</sub><sup>-</sup>+3H<sup>+</sup>+e→FeH<sub>2</sub>PO<sub>4</sub><sup>+</sup>+2H<sub>2</sub>O with <em>E</em>°=1.049 V, an inner cathodic reaction <em>Fe</em><sub>3</sub>O<sub>4</sub>+3H<sub>2</sub>PO<sub>4</sub><sup>-</sup>+8H<sup>+</sup>+2e→3FeH<sub>2</sub>PO<sub>4</sub><sup>+</sup>+4H<sub>2</sub>O with <em>E</em>°=1.177 V, and the anodic reactions <em>Fe</em>+2<em>H</em><sub>2</sub>O→Fe(OH)<sub>2</sub>+2H<sup>+</sup>+2e with <em>E</em>°=-0.104 V and/or 3<em>Fe</em>+4<em>H</em><sub>2</sub>O→Fe<sub>3</sub>O<sub>4</sub>+8H<sup>+</sup>+8e with <em>E</em>°=-0.085 V in which the cathodic reaction determines <em>E</em><sub>corr</sub>. The cathodic reaction occurs at the oxide-solution interface by accepting electrons transported through the oxide, and the anodic reaction occurs at the metal-oxide interface to form oxide by reacting with OH<sup>-</sup> and/or O<sup>2-</sup> ions migrating through the oxide layer. Thus the proposed mechanism is rather different from the local action cell model. After the dissolution of the oxide film, the iron dissolves according to the following cell reactions: <em>Fe</em>+<em>H</em><sub>2</sub>PO<sub>4</sub><sup>-</sup>→FeH<sub>2</sub>PO<sub>4</sub><sup>+</sup>+2e with <em>E</em>°=-0.505 V and 2<em>H</em><sup>+</sup>+2e→H<sub>2</sub> with <em>E</em>°=O V, where the anodic reaction determines <em>E</em><sub>corr</sub>.</p></div>\",\"PeriodicalId\":22037,\"journal\":{\"name\":\"Surface Technology\",\"volume\":\"24 3\",\"pages\":\"Pages 259-271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0376-4583(85)90076-7\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Technology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0376458385900767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Technology","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0376458385900767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

将纯铁在室温下在空气中氧化3-14天,然后浸泡在pH 7.0的0.1 mol l-1的去氧磷酸盐溶液中。测定了腐蚀电位Ecorr和氧化物溶解速率随浸泡时间的变化。提出,在空气中形成的氧化膜,由外部γ-FeOOH层和内部Fe3O4层,根据下面的细胞溶解反应:外部阴极反应γ-FeOOH + H2PO4 - + 3 h + + e→FeH2PO4 + + 2水°e = 1.049 V,一种内在的阴极反应Fe3O4 + 3 H2PO4 - e + h + 8 + 2→3 FeH2PO4 + + 4水与°e = 1.177 V,和阳极反应铁+ 2水→Fe (OH) h + 2 + 2 + 2°e和e = -0.104 V和/或3铁+ 4水→Fe3O4与e°e + h + 8 + 8 = -0.085 V的阴极反应决定Ecorr。阴极反应发生在氧化物-溶液界面上,接受通过氧化物传递的电子;阳极反应发生在金属-氧化物界面上,与通过氧化物层迁移的OH-和/或O2-离子反应形成氧化物。因此,所提出的机制与局部作用细胞模型有很大的不同。氧化膜溶解后,铁根据以下电池反应溶解:Fe+H2PO4-→FeH2PO4++2e, E°=-0.505 V, 2H++2e→H2, E°=O V,其中阳极反应决定Ecorr。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The mechanism of spontaneous dissolution of the air-formed oxide film on iron in a deaerated neutral phosphate solution

Pure iron was oxidized in air at room temperature for 3–14 days and was then immersed in a deaerated 0.1 mol l-1 phosphate solution at pH 7.0. The corrosion potential Ecorr and the rate of dissolution of the oxide were measured as functions of the immersion time. It is proposed that the oxide film formed in air, which consists of an outer γ-FeOOH layer and an inner Fe3O4 layer, dissolves according to the following cell reactions: an outer cathodic reaction γ-FeOOH+H2PO4-+3H++e→FeH2PO4++2H2O with E°=1.049 V, an inner cathodic reaction Fe3O4+3H2PO4-+8H++2e→3FeH2PO4++4H2O with E°=1.177 V, and the anodic reactions Fe+2H2O→Fe(OH)2+2H++2e with E°=-0.104 V and/or 3Fe+4H2O→Fe3O4+8H++8e with E°=-0.085 V in which the cathodic reaction determines Ecorr. The cathodic reaction occurs at the oxide-solution interface by accepting electrons transported through the oxide, and the anodic reaction occurs at the metal-oxide interface to form oxide by reacting with OH- and/or O2- ions migrating through the oxide layer. Thus the proposed mechanism is rather different from the local action cell model. After the dissolution of the oxide film, the iron dissolves according to the following cell reactions: Fe+H2PO4-→FeH2PO4++2e with E°=-0.505 V and 2H++2e→H2 with E°=O V, where the anodic reaction determines Ecorr.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subject index Author index Electrochemical aspects of steel corrosion in sea water The impedance of the porous cadmium electrode in alkali Sorption-desorption studies on alumina pretreated with acids: I. The anionic dye orange II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1