水热法制备大豆残渣荧光碳点

S. Gea, D. G. Ayu, A. Andriayani, R. Goei
{"title":"水热法制备大豆残渣荧光碳点","authors":"S. Gea, D. G. Ayu, A. Andriayani, R. Goei","doi":"10.22487/j24775185.2023.v12.i2.pp71-77","DOIUrl":null,"url":null,"abstract":"Soybean residuals are biowaste composed of carbon chains and amine groups bounded in peptide linkages. The component was identified through FTIR analysis which showed the vibration of the diamide bond (N=C=N) at wave number 2132cm-1. Owing to the existence of these components, soybean has the potential to be used as a precursor to synthesize carbon nano-material, such as Carbon Dots (C - Dots). In this study, the synthesis of C - Dots material from soybean residuals was carried out using the facile hydrothermal method at a temperature of 200 oC for 6 hours. Afterward, the as-synthesized C - Dots were analyzed for their optical property, structure, and morphology. Based on the analysis of the UV - Vis and photoluminescent spectra, C - Dots exhibited absorbance peaks of 292 nm and 301 nm in the UV light region, and fluorescence emission peaks of 468 nm, with blue luminescence characteristics. The observation was supported by the morphological analysis using the HR - TEM, C - Dots exist in a spherical shape with an average particle size of 3.467 nm and a lattice distance of 0.363 nm. Besides, the C - Dots exhibited a good quantum yield of 28.15 %. From the results of the analysis, it is known that the synthesis of C - Dots material has been successfully carried out with particle size < 10 nm.","PeriodicalId":17695,"journal":{"name":"Jurnal Akademika Kimia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Fluorescent Carbon Dots from Soybean Residuals Using Hydrothermal Method\",\"authors\":\"S. Gea, D. G. Ayu, A. Andriayani, R. Goei\",\"doi\":\"10.22487/j24775185.2023.v12.i2.pp71-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soybean residuals are biowaste composed of carbon chains and amine groups bounded in peptide linkages. The component was identified through FTIR analysis which showed the vibration of the diamide bond (N=C=N) at wave number 2132cm-1. Owing to the existence of these components, soybean has the potential to be used as a precursor to synthesize carbon nano-material, such as Carbon Dots (C - Dots). In this study, the synthesis of C - Dots material from soybean residuals was carried out using the facile hydrothermal method at a temperature of 200 oC for 6 hours. Afterward, the as-synthesized C - Dots were analyzed for their optical property, structure, and morphology. Based on the analysis of the UV - Vis and photoluminescent spectra, C - Dots exhibited absorbance peaks of 292 nm and 301 nm in the UV light region, and fluorescence emission peaks of 468 nm, with blue luminescence characteristics. The observation was supported by the morphological analysis using the HR - TEM, C - Dots exist in a spherical shape with an average particle size of 3.467 nm and a lattice distance of 0.363 nm. Besides, the C - Dots exhibited a good quantum yield of 28.15 %. From the results of the analysis, it is known that the synthesis of C - Dots material has been successfully carried out with particle size < 10 nm.\",\"PeriodicalId\":17695,\"journal\":{\"name\":\"Jurnal Akademika Kimia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Akademika Kimia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22487/j24775185.2023.v12.i2.pp71-77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Akademika Kimia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22487/j24775185.2023.v12.i2.pp71-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大豆残渣是一种由碳链和胺基组成的生物废弃物。通过FTIR分析对该组分进行了鉴定,发现该二胺键(N=C=N)在波数2132cm-1处振动。由于这些成分的存在,大豆有可能被用作合成碳纳米材料的前体,如碳点(C - Dots)。本研究以大豆残渣为原料,采用水热法在200℃条件下反应6小时合成C - Dots材料。然后,对合成的C - Dots的光学性质、结构和形貌进行了分析。紫外可见光谱和光致发光光谱分析表明,C - Dots在紫外光区的吸光度峰为292 nm和301 nm,荧光发射峰为468 nm,具有蓝色发光特性。透射电镜(HR - TEM)形貌分析表明,C - Dots呈球形,平均粒径为3.467 nm,晶格间距为0.363 nm。此外,C - Dots的量子产率达到28.15%。从分析结果可知,C - Dots材料的合成已经成功,粒径< 10 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Fluorescent Carbon Dots from Soybean Residuals Using Hydrothermal Method
Soybean residuals are biowaste composed of carbon chains and amine groups bounded in peptide linkages. The component was identified through FTIR analysis which showed the vibration of the diamide bond (N=C=N) at wave number 2132cm-1. Owing to the existence of these components, soybean has the potential to be used as a precursor to synthesize carbon nano-material, such as Carbon Dots (C - Dots). In this study, the synthesis of C - Dots material from soybean residuals was carried out using the facile hydrothermal method at a temperature of 200 oC for 6 hours. Afterward, the as-synthesized C - Dots were analyzed for their optical property, structure, and morphology. Based on the analysis of the UV - Vis and photoluminescent spectra, C - Dots exhibited absorbance peaks of 292 nm and 301 nm in the UV light region, and fluorescence emission peaks of 468 nm, with blue luminescence characteristics. The observation was supported by the morphological analysis using the HR - TEM, C - Dots exist in a spherical shape with an average particle size of 3.467 nm and a lattice distance of 0.363 nm. Besides, the C - Dots exhibited a good quantum yield of 28.15 %. From the results of the analysis, it is known that the synthesis of C - Dots material has been successfully carried out with particle size < 10 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SPF Activity Sunscreen Spray Gel Ethanol Extract of Cinnamon Bark (Cinnamomum burmanii Ness. BI, Syn) Potential Antioxidant Activity in Octyl p - Methoxycinnamate (OPMC) Compound Synthesized by Sonochemical Method Performance of The Composite Electrode of Reduced Graphene Oxide Palm Oil Shell - Zinc Oxide (rGOCKS - ZnO) as a Chemical Oxygen Demand (COD) Sensor by Photoelectrocatalysis Antioxidant Activity Test of Ethanolic Extract of Tempuyung Leaves (Sonchus Arvensis L.) Based on Linoleic - Thiocyanic Method Synthesis of Fluorescent Carbon Dots from Soybean Residuals Using Hydrothermal Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1