{"title":"热带气旋经过阿巴拉契亚山脉引起的强降水的共同成分和地形降雨指数","authors":"Riem Rostom, Yuh-Lang Lin","doi":"10.5539/ESR.V10N1P32","DOIUrl":null,"url":null,"abstract":"Relative contributions of common ingredients to heavy orographic rainfall associated with the passage of Hurricanes Hugo (1989) and Isabel (2003) over the Appalachian Mountains are examined using a numerical weather prediction model. It is found that the key ingredients for producing local heavy orographic rainfall were: high precipitation efficiency, strong low-level flow, strong orographically forced upward motion associated with strong low-level flow over relatively gentle upslope, concave geometry providing local areas of convergence, high moist flow upstream, a relatively large convective system associated with both tropical cyclones (TCs), and relatively slower movement. In addition, neither conditional instability nor potential (convective) instability is found to play essential roles in producing strong upward motion leading to heavy orographic TC rain. A modified Orographic Rain Index (ORI) is proposed as a predictor for heavy orographic TC precipitation, which includes the upstream incoming horizontal wind speed normal to the local orography, the steepness of the mountain, the relative humidity, the TC moving speed, and the horizontal scale of the TC. It is found that the ORI estimated in regions of local maximum rainfall by using fine-resolution numerically simulated results correlate well with rainfall rates for both hurricanes, indicating that it may serve as a predictor for heavy orographic TC rainfall.","PeriodicalId":11486,"journal":{"name":"Earth Science Research","volume":"194 1","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Common Ingredients and Orographic Rain Index (ORI) for Heavy Precipitation Associated with Tropical Cyclones Passing Over the Appalachian Mountains\",\"authors\":\"Riem Rostom, Yuh-Lang Lin\",\"doi\":\"10.5539/ESR.V10N1P32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relative contributions of common ingredients to heavy orographic rainfall associated with the passage of Hurricanes Hugo (1989) and Isabel (2003) over the Appalachian Mountains are examined using a numerical weather prediction model. It is found that the key ingredients for producing local heavy orographic rainfall were: high precipitation efficiency, strong low-level flow, strong orographically forced upward motion associated with strong low-level flow over relatively gentle upslope, concave geometry providing local areas of convergence, high moist flow upstream, a relatively large convective system associated with both tropical cyclones (TCs), and relatively slower movement. In addition, neither conditional instability nor potential (convective) instability is found to play essential roles in producing strong upward motion leading to heavy orographic TC rain. A modified Orographic Rain Index (ORI) is proposed as a predictor for heavy orographic TC precipitation, which includes the upstream incoming horizontal wind speed normal to the local orography, the steepness of the mountain, the relative humidity, the TC moving speed, and the horizontal scale of the TC. It is found that the ORI estimated in regions of local maximum rainfall by using fine-resolution numerically simulated results correlate well with rainfall rates for both hurricanes, indicating that it may serve as a predictor for heavy orographic TC rainfall.\",\"PeriodicalId\":11486,\"journal\":{\"name\":\"Earth Science Research\",\"volume\":\"194 1\",\"pages\":\"32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ESR.V10N1P32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ESR.V10N1P32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Common Ingredients and Orographic Rain Index (ORI) for Heavy Precipitation Associated with Tropical Cyclones Passing Over the Appalachian Mountains
Relative contributions of common ingredients to heavy orographic rainfall associated with the passage of Hurricanes Hugo (1989) and Isabel (2003) over the Appalachian Mountains are examined using a numerical weather prediction model. It is found that the key ingredients for producing local heavy orographic rainfall were: high precipitation efficiency, strong low-level flow, strong orographically forced upward motion associated with strong low-level flow over relatively gentle upslope, concave geometry providing local areas of convergence, high moist flow upstream, a relatively large convective system associated with both tropical cyclones (TCs), and relatively slower movement. In addition, neither conditional instability nor potential (convective) instability is found to play essential roles in producing strong upward motion leading to heavy orographic TC rain. A modified Orographic Rain Index (ORI) is proposed as a predictor for heavy orographic TC precipitation, which includes the upstream incoming horizontal wind speed normal to the local orography, the steepness of the mountain, the relative humidity, the TC moving speed, and the horizontal scale of the TC. It is found that the ORI estimated in regions of local maximum rainfall by using fine-resolution numerically simulated results correlate well with rainfall rates for both hurricanes, indicating that it may serve as a predictor for heavy orographic TC rainfall.