(x)CoFe2O4 -(1−x)Ba0.8Sr0.2TiO3多铁质材料的晶体结构、磁性和介电性能

Anant Shukla, Jyotirekha Mallick, Suman Kumari, Murli Kumar Manglam, P. Biswas, M. Kar
{"title":"(x)CoFe2O4 -(1−x)Ba0.8Sr0.2TiO3多铁质材料的晶体结构、磁性和介电性能","authors":"Anant Shukla, Jyotirekha Mallick, Suman Kumari, Murli Kumar Manglam, P. Biswas, M. Kar","doi":"10.1002/pssb.202300215","DOIUrl":null,"url":null,"abstract":"The composites (x)CoFe2O4–(1−x)Ba0.8Sr0.2TiO3 are prepared by solid‐state reaction method using microwave double‐step sintering. Ba0.8Sr0.2TiO3 crystallizes to tetragonal crystal symmetry with P4mm space group and CoFe2O4 crystallizes to cubic crystal symmetry with Fd3¯m space group. Electron microscopy techniques are used to understand the microstructure, elemental composition, and morphology of the composites. The dielectric properties are measured in the 1 Hz–1 MHz frequency range and 40–400 °C temperature range. Composite with x = 0.1 (ε′ ≈ 170, tan δ = 0.08 at 1 kHz) and 0.2 (ε′ ≈ 390, tan δ = 0.07 at 1 kHz) has better dielectric properties than the parent Ba0.8Sr0.2TiO3 ferroelectric (ε′ ≈ 125, tan δ = 0.16 at 1 kHz) and CoFe2O4 ferrimagnetic phases (ε′ ≈ 375, tan δ = 0.72 at 1 kHz), respectively. Composite with 10% cobalt ferrite has the highest saturation polarization (2.1 μC cm−2), the highest remanent polarization (0.9 μC cm−2), and coercive field (23.9 kV cm−1) compared to ferroelectric phase followed by x = 0.2 composite (PS = 1.6 μC cm−2, Pr = 0.8 μC cm−2, and EC = 19.2 kV cm−1). Composite with x = 0.2 shows the highest magnetic coercive field of 1.96 kOe. Hence, this article advocates that 20% ferrite in the composites is the optimized composition for multiferroic applications. The present study will help to explore piezoelectric, magnetostrictive, and magnetoelectric properties of (x)CoFe2O4–(1−x)Ba0.8Sr0.2TiO3 for the technological application.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal Structure, Magnetic, and Dielectric Properties of (x)CoFe2O4–(1−x)Ba0.8Sr0.2TiO3 Multiferroics\",\"authors\":\"Anant Shukla, Jyotirekha Mallick, Suman Kumari, Murli Kumar Manglam, P. Biswas, M. Kar\",\"doi\":\"10.1002/pssb.202300215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The composites (x)CoFe2O4–(1−x)Ba0.8Sr0.2TiO3 are prepared by solid‐state reaction method using microwave double‐step sintering. Ba0.8Sr0.2TiO3 crystallizes to tetragonal crystal symmetry with P4mm space group and CoFe2O4 crystallizes to cubic crystal symmetry with Fd3¯m space group. Electron microscopy techniques are used to understand the microstructure, elemental composition, and morphology of the composites. The dielectric properties are measured in the 1 Hz–1 MHz frequency range and 40–400 °C temperature range. Composite with x = 0.1 (ε′ ≈ 170, tan δ = 0.08 at 1 kHz) and 0.2 (ε′ ≈ 390, tan δ = 0.07 at 1 kHz) has better dielectric properties than the parent Ba0.8Sr0.2TiO3 ferroelectric (ε′ ≈ 125, tan δ = 0.16 at 1 kHz) and CoFe2O4 ferrimagnetic phases (ε′ ≈ 375, tan δ = 0.72 at 1 kHz), respectively. Composite with 10% cobalt ferrite has the highest saturation polarization (2.1 μC cm−2), the highest remanent polarization (0.9 μC cm−2), and coercive field (23.9 kV cm−1) compared to ferroelectric phase followed by x = 0.2 composite (PS = 1.6 μC cm−2, Pr = 0.8 μC cm−2, and EC = 19.2 kV cm−1). Composite with x = 0.2 shows the highest magnetic coercive field of 1.96 kOe. Hence, this article advocates that 20% ferrite in the composites is the optimized composition for multiferroic applications. The present study will help to explore piezoelectric, magnetostrictive, and magnetoelectric properties of (x)CoFe2O4–(1−x)Ba0.8Sr0.2TiO3 for the technological application.\",\"PeriodicalId\":20107,\"journal\":{\"name\":\"physica status solidi (b)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (b)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202300215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202300215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用微波双步烧结固相反应法制备了CoFe2O4 -(1−x)Ba0.8Sr0.2TiO3复合材料。Ba0.8Sr0.2TiO3结晶为P4mm空间群的四方对称晶体,CoFe2O4结晶为Fd3¯m空间群的立方对称晶体。利用电子显微镜技术了解复合材料的微观结构、元素组成和形貌。在1 Hz-1 MHz频率范围和40-400℃温度范围内测量介电性能。x = 0.1 (ε′≈170,tan δ = 0.08, 1 kHz)和0.2 (ε′≈390,tan δ = 0.07, 1 kHz)的复合材料的介电性能分别优于母材Ba0.8Sr0.2TiO3铁电相(ε′≈125,tan δ = 0.16, 1 kHz)和CoFe2O4铁磁相(ε′≈375,tan δ = 0.72, 1 kHz)。与铁电相(PS = 1.6 μC cm−2,Pr = 0.8 μC cm−2,EC = 19.2 kV cm−1)相比,含10%钴铁氧体的复合材料具有最高的饱和极化(2.1 μC cm−2)、最高的剩余极化(0.9 μC cm−2)和最高的矫顽力场(23.9 kV cm−1)。当x = 0.2时,复合材料的矫顽力最强,为1.96 kOe。因此,本文主张复合材料中20%的铁氧体是多铁性应用的最佳成分。本研究将有助于探索(x)CoFe2O4 -(1−x)Ba0.8Sr0.2TiO3的压电、磁致伸缩和磁电性能,为技术应用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal Structure, Magnetic, and Dielectric Properties of (x)CoFe2O4–(1−x)Ba0.8Sr0.2TiO3 Multiferroics
The composites (x)CoFe2O4–(1−x)Ba0.8Sr0.2TiO3 are prepared by solid‐state reaction method using microwave double‐step sintering. Ba0.8Sr0.2TiO3 crystallizes to tetragonal crystal symmetry with P4mm space group and CoFe2O4 crystallizes to cubic crystal symmetry with Fd3¯m space group. Electron microscopy techniques are used to understand the microstructure, elemental composition, and morphology of the composites. The dielectric properties are measured in the 1 Hz–1 MHz frequency range and 40–400 °C temperature range. Composite with x = 0.1 (ε′ ≈ 170, tan δ = 0.08 at 1 kHz) and 0.2 (ε′ ≈ 390, tan δ = 0.07 at 1 kHz) has better dielectric properties than the parent Ba0.8Sr0.2TiO3 ferroelectric (ε′ ≈ 125, tan δ = 0.16 at 1 kHz) and CoFe2O4 ferrimagnetic phases (ε′ ≈ 375, tan δ = 0.72 at 1 kHz), respectively. Composite with 10% cobalt ferrite has the highest saturation polarization (2.1 μC cm−2), the highest remanent polarization (0.9 μC cm−2), and coercive field (23.9 kV cm−1) compared to ferroelectric phase followed by x = 0.2 composite (PS = 1.6 μC cm−2, Pr = 0.8 μC cm−2, and EC = 19.2 kV cm−1). Composite with x = 0.2 shows the highest magnetic coercive field of 1.96 kOe. Hence, this article advocates that 20% ferrite in the composites is the optimized composition for multiferroic applications. The present study will help to explore piezoelectric, magnetostrictive, and magnetoelectric properties of (x)CoFe2O4–(1−x)Ba0.8Sr0.2TiO3 for the technological application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1