{"title":"螺旋桨精确建模的涡度约束技术和叶片单元法","authors":"Y. Chandukrishna, T. N. Venkatesh","doi":"10.1080/10618562.2022.2164276","DOIUrl":null,"url":null,"abstract":"Traditional CFD techniques are not effective in preserving wakes and vortices over larger distances and for longer times. Vorticity Confinement (VC) technique helps counter the numerical diffusion to preserve wakes and vortices. In the current study, VC was used to accurately model the propeller flow using two different propeller modelling techniques after being implemented into SU2, an open-source CFD solver. One resolves flow past the propeller by solving RANS equations in a rotating reference frame. Another is a simplified propeller modelling technique in which the propeller needs to be modelled as a disk, and the propeller loading is determined using the blade element method. In the first case, VC enabled tip and hub vortices to convect over larger distances from the propeller, along with an improved resolution of gradients in the tip vortex. With the latter technique, VC helped conserve the tangential velocities for longer distances.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"211 1","pages":"719 - 730"},"PeriodicalIF":1.1000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vorticity Confinement Technique and Blade Element Method for Accurate Propeller Modelling\",\"authors\":\"Y. Chandukrishna, T. N. Venkatesh\",\"doi\":\"10.1080/10618562.2022.2164276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional CFD techniques are not effective in preserving wakes and vortices over larger distances and for longer times. Vorticity Confinement (VC) technique helps counter the numerical diffusion to preserve wakes and vortices. In the current study, VC was used to accurately model the propeller flow using two different propeller modelling techniques after being implemented into SU2, an open-source CFD solver. One resolves flow past the propeller by solving RANS equations in a rotating reference frame. Another is a simplified propeller modelling technique in which the propeller needs to be modelled as a disk, and the propeller loading is determined using the blade element method. In the first case, VC enabled tip and hub vortices to convect over larger distances from the propeller, along with an improved resolution of gradients in the tip vortex. With the latter technique, VC helped conserve the tangential velocities for longer distances.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"211 1\",\"pages\":\"719 - 730\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2022.2164276\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2022.2164276","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Vorticity Confinement Technique and Blade Element Method for Accurate Propeller Modelling
Traditional CFD techniques are not effective in preserving wakes and vortices over larger distances and for longer times. Vorticity Confinement (VC) technique helps counter the numerical diffusion to preserve wakes and vortices. In the current study, VC was used to accurately model the propeller flow using two different propeller modelling techniques after being implemented into SU2, an open-source CFD solver. One resolves flow past the propeller by solving RANS equations in a rotating reference frame. Another is a simplified propeller modelling technique in which the propeller needs to be modelled as a disk, and the propeller loading is determined using the blade element method. In the first case, VC enabled tip and hub vortices to convect over larger distances from the propeller, along with an improved resolution of gradients in the tip vortex. With the latter technique, VC helped conserve the tangential velocities for longer distances.
期刊介绍:
The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields.
The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.