{"title":"基于免疫模糊 PID 控制器的啤酒发酵和酿造温度监控系统","authors":"Fanfeng Song, Xiangtian Meng, Zhiqiang Chen","doi":"10.1002/adc2.154","DOIUrl":null,"url":null,"abstract":"<p>Beer is one of the popular drinks, the temperature control in the process of beer fermentation plays a crucial role. The current temperature control method mainly uses the traditional PID control, but its control adjustment time is long, the overshoot is large, the control effect still needs to be improved. A beer fermentation and brewing temperature monitoring system based on immune fuzzy PID controller was designed in this experiment. Immune fuzzy PID controller is a nonlinear controller, which combines the advantages of traditional PID controller and fuzzy controller and refers to the regulatory mechanism of biological immune system, and obtains good suitable characteristics by controlling the parameter values of the system. PID converts the rule information into fuzzy information by fuzzy basic theory and stores it in computer database. By referring to the actual situation of PID, the computer uses fuzzy reasoning to adjust the PID parameters. The beer fermentation temperature monitoring system based on the traditional PID controller is compared with the proposed system. Under the control of the designed temperature monitoring system, the temperature has a certain effect on the fermentation speed of beer. The fermentation time of high temperature fermentation (16°C) is 3 days shorter than that of normal temperature fermentation (10°C). The robustness and applicability of the system are verified.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.154","citationCount":"0","resultStr":"{\"title\":\"Temperature monitoring system of beer fermentation and brewing based on immune fuzzy PID controller\",\"authors\":\"Fanfeng Song, Xiangtian Meng, Zhiqiang Chen\",\"doi\":\"10.1002/adc2.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Beer is one of the popular drinks, the temperature control in the process of beer fermentation plays a crucial role. The current temperature control method mainly uses the traditional PID control, but its control adjustment time is long, the overshoot is large, the control effect still needs to be improved. A beer fermentation and brewing temperature monitoring system based on immune fuzzy PID controller was designed in this experiment. Immune fuzzy PID controller is a nonlinear controller, which combines the advantages of traditional PID controller and fuzzy controller and refers to the regulatory mechanism of biological immune system, and obtains good suitable characteristics by controlling the parameter values of the system. PID converts the rule information into fuzzy information by fuzzy basic theory and stores it in computer database. By referring to the actual situation of PID, the computer uses fuzzy reasoning to adjust the PID parameters. The beer fermentation temperature monitoring system based on the traditional PID controller is compared with the proposed system. Under the control of the designed temperature monitoring system, the temperature has a certain effect on the fermentation speed of beer. The fermentation time of high temperature fermentation (16°C) is 3 days shorter than that of normal temperature fermentation (10°C). The robustness and applicability of the system are verified.</p>\",\"PeriodicalId\":100030,\"journal\":{\"name\":\"Advanced Control for Applications\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.154\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Control for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adc2.154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature monitoring system of beer fermentation and brewing based on immune fuzzy PID controller
Beer is one of the popular drinks, the temperature control in the process of beer fermentation plays a crucial role. The current temperature control method mainly uses the traditional PID control, but its control adjustment time is long, the overshoot is large, the control effect still needs to be improved. A beer fermentation and brewing temperature monitoring system based on immune fuzzy PID controller was designed in this experiment. Immune fuzzy PID controller is a nonlinear controller, which combines the advantages of traditional PID controller and fuzzy controller and refers to the regulatory mechanism of biological immune system, and obtains good suitable characteristics by controlling the parameter values of the system. PID converts the rule information into fuzzy information by fuzzy basic theory and stores it in computer database. By referring to the actual situation of PID, the computer uses fuzzy reasoning to adjust the PID parameters. The beer fermentation temperature monitoring system based on the traditional PID controller is compared with the proposed system. Under the control of the designed temperature monitoring system, the temperature has a certain effect on the fermentation speed of beer. The fermentation time of high temperature fermentation (16°C) is 3 days shorter than that of normal temperature fermentation (10°C). The robustness and applicability of the system are verified.