{"title":"SIS型层状超导结构中的电流-相关系","authors":"A. Shutovskyi, V. Sakhnyuk","doi":"10.5488/CMP.24.23701","DOIUrl":null,"url":null,"abstract":"The dependence of the current density on the phase difference is investigated considering the layered superconducting structures of a SIS’IS type. To simplify the calculations, the quasiclassical equations for the Green’s functions in a t-representation are derived. An order parameter is considered as a piecewise constant function. To consider the general case, no restrictions on the dielectric layer transparency and the thickness of the intermediate layer are imposed. It was found that a new analytical expression for the current-phase relation can be used with the aim to obtain a number of previously known results arising in particular cases.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current-phase relation in layered superconducting structures of SIS’IS type\",\"authors\":\"A. Shutovskyi, V. Sakhnyuk\",\"doi\":\"10.5488/CMP.24.23701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dependence of the current density on the phase difference is investigated considering the layered superconducting structures of a SIS’IS type. To simplify the calculations, the quasiclassical equations for the Green’s functions in a t-representation are derived. An order parameter is considered as a piecewise constant function. To consider the general case, no restrictions on the dielectric layer transparency and the thickness of the intermediate layer are imposed. It was found that a new analytical expression for the current-phase relation can be used with the aim to obtain a number of previously known results arising in particular cases.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.24.23701\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.24.23701","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Current-phase relation in layered superconducting structures of SIS’IS type
The dependence of the current density on the phase difference is investigated considering the layered superconducting structures of a SIS’IS type. To simplify the calculations, the quasiclassical equations for the Green’s functions in a t-representation are derived. An order parameter is considered as a piecewise constant function. To consider the general case, no restrictions on the dielectric layer transparency and the thickness of the intermediate layer are imposed. It was found that a new analytical expression for the current-phase relation can be used with the aim to obtain a number of previously known results arising in particular cases.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.