{"title":"掺硅石墨烯的DFT研究:甲醛和乙醛的吸附","authors":"Özge Akyavaşoğlu, M. F. Fellah","doi":"10.33435/tcandtc.691754","DOIUrl":null,"url":null,"abstract":"In this study, Si doped graphene sensor property for indoor volatile contaminants formaldehyde and acetaldehyde has been examined. The B3LYP hybrid method with 6-31G(d,p) basis set has been used for this purpose. The adsorption energy of formaldehyde and acetaldehyde have been found to be -24.5 and -33.3 kcal/mol, respectively. The characteristic C=O bond frequency has been decreased after adsorption of the molecules and the bond peaks frequencies have been decreased in both aldehydes. There was a charge transfer from adsorbent to formaldehyde oppositely from acetaldehyde to adsorbent.","PeriodicalId":36025,"journal":{"name":"Turkish Computational and Theoretical Chemistry","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde\",\"authors\":\"Özge Akyavaşoğlu, M. F. Fellah\",\"doi\":\"10.33435/tcandtc.691754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Si doped graphene sensor property for indoor volatile contaminants formaldehyde and acetaldehyde has been examined. The B3LYP hybrid method with 6-31G(d,p) basis set has been used for this purpose. The adsorption energy of formaldehyde and acetaldehyde have been found to be -24.5 and -33.3 kcal/mol, respectively. The characteristic C=O bond frequency has been decreased after adsorption of the molecules and the bond peaks frequencies have been decreased in both aldehydes. There was a charge transfer from adsorbent to formaldehyde oppositely from acetaldehyde to adsorbent.\",\"PeriodicalId\":36025,\"journal\":{\"name\":\"Turkish Computational and Theoretical Chemistry\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33435/tcandtc.691754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Computational and Theoretical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33435/tcandtc.691754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde
In this study, Si doped graphene sensor property for indoor volatile contaminants formaldehyde and acetaldehyde has been examined. The B3LYP hybrid method with 6-31G(d,p) basis set has been used for this purpose. The adsorption energy of formaldehyde and acetaldehyde have been found to be -24.5 and -33.3 kcal/mol, respectively. The characteristic C=O bond frequency has been decreased after adsorption of the molecules and the bond peaks frequencies have been decreased in both aldehydes. There was a charge transfer from adsorbent to formaldehyde oppositely from acetaldehyde to adsorbent.