PST:一种更实用的基于对抗性学习的网站指纹防御方法

Minghao Jiang, Yong Wang, Gaopeng Gou, Wei Cai, G. Xiong, Junzheng Shi
{"title":"PST:一种更实用的基于对抗性学习的网站指纹防御方法","authors":"Minghao Jiang, Yong Wang, Gaopeng Gou, Wei Cai, G. Xiong, Junzheng Shi","doi":"10.1109/GLOBECOM42002.2020.9322307","DOIUrl":null,"url":null,"abstract":"To prevent serious privacy leakage from website fingerprinting (WF) attacks, many traditional or adversarial WF defenses have been released. However, traditional WF defenses such as Walkie-Talkie (W-T) still generate patterns that might be captured by the deep learning (DL) based WF attacks, which are not effective. Adversarial perturbation based WF defenses better confuse WF attacks, but their requirements for the entire original traffic trace and perturbating any points including historical packets or cells of the network traffic are not practical. To deal with the effectiveness and practicality issues of existing defenses, we proposed a novel WF defense in this paper, called PST. Given a few past bursts of a trace as input, PST Predicts subsequent fuzzy bursts with a neural network, then Searches small but effective adversarial perturbation directions based on observed and predicted bursts, and finally Transfers the perturbation directions to the remaining bursts. Our experimental results over a public closed-world dataset demonstrate that PST can successfully break the network traffic pattern and achieve a high evasion rate of 87.6%, beating W-T by more than 31.59% at the same bandwidth overhead, with only observing 10 transferred bursts. Moreover, our defense adapts to WF attacks dynamically, which could be retrained or updated.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"6 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PST: a More Practical Adversarial Learning-based Defense Against Website Fingerprinting\",\"authors\":\"Minghao Jiang, Yong Wang, Gaopeng Gou, Wei Cai, G. Xiong, Junzheng Shi\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To prevent serious privacy leakage from website fingerprinting (WF) attacks, many traditional or adversarial WF defenses have been released. However, traditional WF defenses such as Walkie-Talkie (W-T) still generate patterns that might be captured by the deep learning (DL) based WF attacks, which are not effective. Adversarial perturbation based WF defenses better confuse WF attacks, but their requirements for the entire original traffic trace and perturbating any points including historical packets or cells of the network traffic are not practical. To deal with the effectiveness and practicality issues of existing defenses, we proposed a novel WF defense in this paper, called PST. Given a few past bursts of a trace as input, PST Predicts subsequent fuzzy bursts with a neural network, then Searches small but effective adversarial perturbation directions based on observed and predicted bursts, and finally Transfers the perturbation directions to the remaining bursts. Our experimental results over a public closed-world dataset demonstrate that PST can successfully break the network traffic pattern and achieve a high evasion rate of 87.6%, beating W-T by more than 31.59% at the same bandwidth overhead, with only observing 10 transferred bursts. Moreover, our defense adapts to WF attacks dynamically, which could be retrained or updated.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"6 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了防止网站指纹(WF)攻击造成严重的隐私泄露,许多传统的或对抗性的WF防御已经被发布。然而,传统的WF防御,如对讲机(W-T)仍然产生可能被基于深度学习(DL)的WF攻击捕获的模式,这是无效的。基于对抗性扰动的WF防御可以更好地混淆WF攻击,但它们对整个原始流量跟踪和扰动任何点(包括网络流量的历史数据包或单元)的要求是不切实际的。为了解决现有防御的有效性和实用性问题,本文提出了一种新的WF防御,称为PST。给定轨迹的几个过去的脉冲作为输入,PST用神经网络预测随后的模糊脉冲,然后根据观察到的和预测的脉冲搜索小但有效的对抗扰动方向,最后将扰动方向转移到剩余的脉冲中。我们在一个公开的封闭世界数据集上的实验结果表明,在相同的带宽开销下,PST可以成功地打破网络流量模式,达到87.6%的高逃避率,比W-T高出31.59%以上,仅观察到10个传输突发。此外,我们的防御可以动态适应WF攻击,可以重新训练或更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PST: a More Practical Adversarial Learning-based Defense Against Website Fingerprinting
To prevent serious privacy leakage from website fingerprinting (WF) attacks, many traditional or adversarial WF defenses have been released. However, traditional WF defenses such as Walkie-Talkie (W-T) still generate patterns that might be captured by the deep learning (DL) based WF attacks, which are not effective. Adversarial perturbation based WF defenses better confuse WF attacks, but their requirements for the entire original traffic trace and perturbating any points including historical packets or cells of the network traffic are not practical. To deal with the effectiveness and practicality issues of existing defenses, we proposed a novel WF defense in this paper, called PST. Given a few past bursts of a trace as input, PST Predicts subsequent fuzzy bursts with a neural network, then Searches small but effective adversarial perturbation directions based on observed and predicted bursts, and finally Transfers the perturbation directions to the remaining bursts. Our experimental results over a public closed-world dataset demonstrate that PST can successfully break the network traffic pattern and achieve a high evasion rate of 87.6%, beating W-T by more than 31.59% at the same bandwidth overhead, with only observing 10 transferred bursts. Moreover, our defense adapts to WF attacks dynamically, which could be retrained or updated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1