基于稀疏表示的地下矿山目标检测算法

Yan Lu, Qin Huang
{"title":"基于稀疏表示的地下矿山目标检测算法","authors":"Yan Lu, Qin Huang","doi":"10.4172/0976-4860.1000210","DOIUrl":null,"url":null,"abstract":"This paper puts forward an improved K-SVD object detection algorithm for the problem of multiple noise sources in underground mine video. Firstly, the background modeling is applied in the video; then, the improved non-local mean filtering algorithm is used to enhance the image quality; finally, the improved image is processed by the sparse representation algorithm to further detect the moving object. In order to verify the effectiveness of the proposed algorithm, the algorithm and other algorithms are applied to video object detection in two different scenarios. The experimental results show that, in the underground mine video, the proposed algorithm can increase the accuracy by more than 8% compared with the traditional K-SVD algorithm, and the proportion of error points decreases by about 25%. Better detection of the moving object is achieved by the proposed algorithm.","PeriodicalId":90538,"journal":{"name":"International journal of advancements in computing technology","volume":"284 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Object Detection Algorithm in Underground Mine Based on Sparse Representation\",\"authors\":\"Yan Lu, Qin Huang\",\"doi\":\"10.4172/0976-4860.1000210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper puts forward an improved K-SVD object detection algorithm for the problem of multiple noise sources in underground mine video. Firstly, the background modeling is applied in the video; then, the improved non-local mean filtering algorithm is used to enhance the image quality; finally, the improved image is processed by the sparse representation algorithm to further detect the moving object. In order to verify the effectiveness of the proposed algorithm, the algorithm and other algorithms are applied to video object detection in two different scenarios. The experimental results show that, in the underground mine video, the proposed algorithm can increase the accuracy by more than 8% compared with the traditional K-SVD algorithm, and the proportion of error points decreases by about 25%. Better detection of the moving object is achieved by the proposed algorithm.\",\"PeriodicalId\":90538,\"journal\":{\"name\":\"International journal of advancements in computing technology\",\"volume\":\"284 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of advancements in computing technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/0976-4860.1000210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of advancements in computing technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/0976-4860.1000210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对矿山井下视频中多噪声源的问题,提出了一种改进的K-SVD目标检测算法。首先,对视频进行背景建模;然后,采用改进的非局部均值滤波算法增强图像质量;最后,利用稀疏表示算法对改进后的图像进行处理,进一步检测运动目标。为了验证所提算法的有效性,将该算法与其他算法分别应用于两种不同场景下的视频目标检测。实验结果表明,在井下视频中,与传统的K-SVD算法相比,该算法的精度提高了8%以上,误差点的比例降低了25%左右。该算法对运动目标的检测效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Detection Algorithm in Underground Mine Based on Sparse Representation
This paper puts forward an improved K-SVD object detection algorithm for the problem of multiple noise sources in underground mine video. Firstly, the background modeling is applied in the video; then, the improved non-local mean filtering algorithm is used to enhance the image quality; finally, the improved image is processed by the sparse representation algorithm to further detect the moving object. In order to verify the effectiveness of the proposed algorithm, the algorithm and other algorithms are applied to video object detection in two different scenarios. The experimental results show that, in the underground mine video, the proposed algorithm can increase the accuracy by more than 8% compared with the traditional K-SVD algorithm, and the proportion of error points decreases by about 25%. Better detection of the moving object is achieved by the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Parameter Identification for Moving Base Nonholonomic Robot Consisting Primary Joints Editorial note :International Journal of Advancements in Technology Bone substitute biomaterials Introductory Guide to Collaborative Robots Multi-Agent-Based Performance Analysis of Classifiers for Breast Tumours
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1