synthACS:空间微模拟建模与综合美国社区调查数据

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Software Pub Date : 2022-01-01 DOI:10.18637/jss.v104.i07
Alex P. Whitworth
{"title":"synthACS:空间微模拟建模与综合美国社区调查数据","authors":"Alex P. Whitworth","doi":"10.18637/jss.v104.i07","DOIUrl":null,"url":null,"abstract":"synthACS is an R package that provides flexible tools for building synthetic micro-datasets based on American Community Survey (ACS) base tables, allows data-extensibility and enables to conduct spatial microsimulation modeling (SMSM) via simulated annealing. To our knowledge, it is the first R package to provide broadly applicable tools for SMSM with ACS data as well as the first SMSM implementation that uses unequal probability sampling in the simulated annealing algorithm. In this paper, we contextualize these developments within the SMSM literature, provide a hands-on user-guide to package synthACS , present a case study of SMSM related to population dynamics, and note areas for future research.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"100 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"synthACS: Spatial Microsimulation Modeling with Synthetic American Community Survey Data\",\"authors\":\"Alex P. Whitworth\",\"doi\":\"10.18637/jss.v104.i07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"synthACS is an R package that provides flexible tools for building synthetic micro-datasets based on American Community Survey (ACS) base tables, allows data-extensibility and enables to conduct spatial microsimulation modeling (SMSM) via simulated annealing. To our knowledge, it is the first R package to provide broadly applicable tools for SMSM with ACS data as well as the first SMSM implementation that uses unequal probability sampling in the simulated annealing algorithm. In this paper, we contextualize these developments within the SMSM literature, provide a hands-on user-guide to package synthACS , present a case study of SMSM related to population dynamics, and note areas for future research.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v104.i07\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v104.i07","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

synthACS是一个R包,它提供了基于美国社区调查(ACS)基表构建合成微数据集的灵活工具,允许数据可扩展性,并能够通过模拟退火进行空间微模拟建模(SMSM)。据我们所知,它是第一个为具有ACS数据的SMSM提供广泛适用工具的R包,也是第一个在模拟退火算法中使用不等概率抽样的SMSM实现。在本文中,我们在SMSM文献中对这些发展进行了背景介绍,提供了包synthACS的动手用户指南,提出了与人口动态相关的SMSM案例研究,并指出了未来研究的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
synthACS: Spatial Microsimulation Modeling with Synthetic American Community Survey Data
synthACS is an R package that provides flexible tools for building synthetic micro-datasets based on American Community Survey (ACS) base tables, allows data-extensibility and enables to conduct spatial microsimulation modeling (SMSM) via simulated annealing. To our knowledge, it is the first R package to provide broadly applicable tools for SMSM with ACS data as well as the first SMSM implementation that uses unequal probability sampling in the simulated annealing algorithm. In this paper, we contextualize these developments within the SMSM literature, provide a hands-on user-guide to package synthACS , present a case study of SMSM related to population dynamics, and note areas for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
期刊最新文献
spsurvey: Spatial Sampling Design and Analysis in R. Application of Equal Local Levels to Improve Q-Q Plot Testing Bands with R Package qqconf. Elastic Net Regularization Paths for All Generalized Linear Models. Broken Stick Model for Irregular Longitudinal Data jumpdiff: A Python Library for Statistical Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1