多孔硅和硅量子点的光学生物传感和生物成像(特邀评论)

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy Progress in Electromagnetics Research-Pier Pub Date : 2017-01-01 DOI:10.2528/PIER17120504
Xiaoyu Cheng, B. Guan
{"title":"多孔硅和硅量子点的光学生物传感和生物成像(特邀评论)","authors":"Xiaoyu Cheng, B. Guan","doi":"10.2528/PIER17120504","DOIUrl":null,"url":null,"abstract":"Silicon is the second most abundant element in Earth’s crust, and it is considered one of the most important materials for the world. Crystalline silicon has continued to serve as the foundational building block for the microelectronic industry, and new forms of silicon materials have promised an even brighter future with emerging applications from optoelectronic devices, energy and environment technologies and new therapeutics [1–3]. Many of these promises are often associated with reduction of the physical size of the material to the micro/nano scale which yields novel physical properties. For this reason, understanding and learning how to control these features is of high importance, and unsurprisingly, low dimension silicon structures have drawn broad research interests from physicists, chemists, materials engineers and medical scientists. At the new frontiers of nanostructure silicon research, biomedical applications are very appealing because silicon is highly biocompatible [4]. With the small sized silicon materials suitable for these applications, two distinct structures are porous silicon, and silicon nanocrystals which are also called quantum dots. Porous silicon is a form of crystalline silicon where the surface is embedded with nanometer sized pores [5], while silicon quantum dots are ultrasmall crystals of only a few nanometers in size [6]. They both exhibit unique optical features suitable for sensing and imaging, which can be tuned via comparable surface engineering methods. For this reason, this review combines the two subjects in one article, with the scope of advancing th fields through a comparative approach. Since both porous silicon and silicon quantum dots have been actively researched in the past two decades and multiple excellent reviews have been published [3, 5, 7], this paper will only highlight recent progresses in the past several years.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"68 1","pages":"103-121"},"PeriodicalIF":6.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Optical Biosensing and Bioimaging with Porous Silicon and Silicon Quantum Dots ( Invited Review )\",\"authors\":\"Xiaoyu Cheng, B. Guan\",\"doi\":\"10.2528/PIER17120504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon is the second most abundant element in Earth’s crust, and it is considered one of the most important materials for the world. Crystalline silicon has continued to serve as the foundational building block for the microelectronic industry, and new forms of silicon materials have promised an even brighter future with emerging applications from optoelectronic devices, energy and environment technologies and new therapeutics [1–3]. Many of these promises are often associated with reduction of the physical size of the material to the micro/nano scale which yields novel physical properties. For this reason, understanding and learning how to control these features is of high importance, and unsurprisingly, low dimension silicon structures have drawn broad research interests from physicists, chemists, materials engineers and medical scientists. At the new frontiers of nanostructure silicon research, biomedical applications are very appealing because silicon is highly biocompatible [4]. With the small sized silicon materials suitable for these applications, two distinct structures are porous silicon, and silicon nanocrystals which are also called quantum dots. Porous silicon is a form of crystalline silicon where the surface is embedded with nanometer sized pores [5], while silicon quantum dots are ultrasmall crystals of only a few nanometers in size [6]. They both exhibit unique optical features suitable for sensing and imaging, which can be tuned via comparable surface engineering methods. For this reason, this review combines the two subjects in one article, with the scope of advancing th fields through a comparative approach. Since both porous silicon and silicon quantum dots have been actively researched in the past two decades and multiple excellent reviews have been published [3, 5, 7], this paper will only highlight recent progresses in the past several years.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"68 1\",\"pages\":\"103-121\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER17120504\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER17120504","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 19

摘要

硅是地壳中含量第二丰富的元素,被认为是世界上最重要的材料之一。晶体硅一直是微电子工业的基础材料,随着光电子器件、能源和环境技术以及新疗法的应用,新型硅材料的前景更加光明[1-3]。许多这些承诺通常与材料的物理尺寸减小到微/纳米尺度有关,从而产生新的物理特性。因此,理解和学习如何控制这些特征是非常重要的,毫不奇怪,低维硅结构已经引起了物理学家、化学家、材料工程师和医学科学家的广泛研究兴趣。在纳米结构硅研究的新前沿,生物医学应用非常有吸引力,因为硅具有高度的生物相容性[4]。适合这些应用的小尺寸硅材料有两种不同的结构:多孔硅和硅纳米晶体,也称为量子点。多孔硅是晶体硅的一种形式,其表面嵌有纳米大小的孔[5],而硅量子点是只有几纳米大小的超小晶体[6]。它们都表现出独特的光学特性,适合于传感和成像,可以通过类似的表面工程方法进行调整。因此,本综述将这两个主题结合在一篇文章中,并通过比较方法推进这两个领域的范围。由于多孔硅和硅量子点在过去的二十年里都得到了积极的研究,并且发表了许多优秀的评论[3,5,7],因此本文只重点介绍过去几年的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical Biosensing and Bioimaging with Porous Silicon and Silicon Quantum Dots ( Invited Review )
Silicon is the second most abundant element in Earth’s crust, and it is considered one of the most important materials for the world. Crystalline silicon has continued to serve as the foundational building block for the microelectronic industry, and new forms of silicon materials have promised an even brighter future with emerging applications from optoelectronic devices, energy and environment technologies and new therapeutics [1–3]. Many of these promises are often associated with reduction of the physical size of the material to the micro/nano scale which yields novel physical properties. For this reason, understanding and learning how to control these features is of high importance, and unsurprisingly, low dimension silicon structures have drawn broad research interests from physicists, chemists, materials engineers and medical scientists. At the new frontiers of nanostructure silicon research, biomedical applications are very appealing because silicon is highly biocompatible [4]. With the small sized silicon materials suitable for these applications, two distinct structures are porous silicon, and silicon nanocrystals which are also called quantum dots. Porous silicon is a form of crystalline silicon where the surface is embedded with nanometer sized pores [5], while silicon quantum dots are ultrasmall crystals of only a few nanometers in size [6]. They both exhibit unique optical features suitable for sensing and imaging, which can be tuned via comparable surface engineering methods. For this reason, this review combines the two subjects in one article, with the scope of advancing th fields through a comparative approach. Since both porous silicon and silicon quantum dots have been actively researched in the past two decades and multiple excellent reviews have been published [3, 5, 7], this paper will only highlight recent progresses in the past several years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
期刊最新文献
L-BAND RADAR SCATTERING AND SOIL MOISTURE RETRIEVAL OF WHEAT, CANOLA AND PASTURE FIELDS FOR SMAP ACTIVE ALGORITHMS DESIGNING NANOINCLUSIONS FOR QUANTUM SENSING BASED ON ELECTROMAGNETIC SCATTERING FORMALISM (INVITED PAPER) A FINE SCALE PARTIALLY COHERENT PATCH MODEL INCLUDING TOPOGRAPHICAL EFFECTS FOR GNSS-R DDM SIMULATIONS Directional Polaritonic Excitation of Circular, Huygens and Janus Dipoles in Graphene-Hexagonal Boron Nitride Heterostructures HIGH EFFICIENCY MULTI-FUNCTIONAL ALL-OPTICAL LOGIC GATES BASED ON MIM PLASMONIC WAVEGUIDE STRUCTURE WITH THE KERR-TYPE NONLINEAR NANO-RING RESONATORS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1