{"title":"基于非孤立五边形的Goldberg多面体的笼状结构的新家族","authors":"A. R. javan, Yuanpeng Liu, Y. Xie","doi":"10.1093/jcde/qwad005","DOIUrl":null,"url":null,"abstract":"\n A Goldberg polyhedron is a convex polyhedron made of hexagons and pentagons that have icosahedral rotational symmetry. Goldberg polyhedra have appeared frequently in art, architecture, and engineering. Some carbon fullerenes, inorganic cages, viruses, and proteins in nature exhibit the fundamental shapes of Goldberg polyhedra. According to Euler's polyhedron formula, an icosahedral Goldberg polyhedron always has exactly 12 pentagons. In Goldberg polyhedra, all pentagons are surrounded by hexagons only—this is known as the isolated pentagon rule (IPR). The present study systematically developed new families of cage-like structures derived from the initial topology of Goldberg polyhedra but with the 12 pentagons fused in five different arrangements and different densities of hexagonal faces. These families might be of great significance in biology and chemistry, where some non-IPR fullerenes have been created recently with chemical reactivity and properties markedly different from IPR fullerenes. Furthermore, this study has conducted an optimisation for multiple objectives and constraints, such as equal edge length, equal area, planarity, and spherical shape. The optimised configurations are highly desirable for architectural applications, where a structure with a small number of different edge lengths and planar faces may significantly reduce the fabrication cost and enable the construction of surfaces with flat panels.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"3 1","pages":"527-538"},"PeriodicalIF":4.8000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New families of cage-like structures based on Goldberg polyhedra with non-isolated pentagons\",\"authors\":\"A. R. javan, Yuanpeng Liu, Y. Xie\",\"doi\":\"10.1093/jcde/qwad005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A Goldberg polyhedron is a convex polyhedron made of hexagons and pentagons that have icosahedral rotational symmetry. Goldberg polyhedra have appeared frequently in art, architecture, and engineering. Some carbon fullerenes, inorganic cages, viruses, and proteins in nature exhibit the fundamental shapes of Goldberg polyhedra. According to Euler's polyhedron formula, an icosahedral Goldberg polyhedron always has exactly 12 pentagons. In Goldberg polyhedra, all pentagons are surrounded by hexagons only—this is known as the isolated pentagon rule (IPR). The present study systematically developed new families of cage-like structures derived from the initial topology of Goldberg polyhedra but with the 12 pentagons fused in five different arrangements and different densities of hexagonal faces. These families might be of great significance in biology and chemistry, where some non-IPR fullerenes have been created recently with chemical reactivity and properties markedly different from IPR fullerenes. Furthermore, this study has conducted an optimisation for multiple objectives and constraints, such as equal edge length, equal area, planarity, and spherical shape. The optimised configurations are highly desirable for architectural applications, where a structure with a small number of different edge lengths and planar faces may significantly reduce the fabrication cost and enable the construction of surfaces with flat panels.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":\"3 1\",\"pages\":\"527-538\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwad005\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad005","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
New families of cage-like structures based on Goldberg polyhedra with non-isolated pentagons
A Goldberg polyhedron is a convex polyhedron made of hexagons and pentagons that have icosahedral rotational symmetry. Goldberg polyhedra have appeared frequently in art, architecture, and engineering. Some carbon fullerenes, inorganic cages, viruses, and proteins in nature exhibit the fundamental shapes of Goldberg polyhedra. According to Euler's polyhedron formula, an icosahedral Goldberg polyhedron always has exactly 12 pentagons. In Goldberg polyhedra, all pentagons are surrounded by hexagons only—this is known as the isolated pentagon rule (IPR). The present study systematically developed new families of cage-like structures derived from the initial topology of Goldberg polyhedra but with the 12 pentagons fused in five different arrangements and different densities of hexagonal faces. These families might be of great significance in biology and chemistry, where some non-IPR fullerenes have been created recently with chemical reactivity and properties markedly different from IPR fullerenes. Furthermore, this study has conducted an optimisation for multiple objectives and constraints, such as equal edge length, equal area, planarity, and spherical shape. The optimised configurations are highly desirable for architectural applications, where a structure with a small number of different edge lengths and planar faces may significantly reduce the fabrication cost and enable the construction of surfaces with flat panels.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.