利用合作同调增强抵抗图对抗攻击

Zhihao Zhu, Chenwang Wu, Mingyang Zhou, Hao Liao, DefuLian, Enhong Chen
{"title":"利用合作同调增强抵抗图对抗攻击","authors":"Zhihao Zhu, Chenwang Wu, Mingyang Zhou, Hao Liao, DefuLian, Enhong Chen","doi":"10.48550/arXiv.2211.08068","DOIUrl":null,"url":null,"abstract":"Recent studies show that Graph Neural Networks(GNNs) are vulnerable and easily fooled by small perturbations, which has raised considerable concerns for adapting GNNs in various safety-critical applications. In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack(GIA), in which the adversary poisons the graph by injecting fake nodes instead of modifying existing structures or node attributes. Inspired by findings that the adversarial attacks are related to the increased heterophily on perturbed graphs (the adversary tends to connect dissimilar nodes), we propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model. Specifically, the model generates pseudo-labels for unlabeled nodes in each round of training to reduce heterophilous edges of nodes with distinct labels. The cleaner graph is fed back to the model, producing more informative pseudo-labels. In such an iterative manner, model robustness is then promisingly enhanced. We present the theoretical analysis of the effect of homophilous augmentation and provide the guarantee of the proposal's validity. Experimental results empirically demonstrate the effectiveness of CHAGNN in comparison with recent state-of-the-art defense methods on diverse real-world datasets.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resisting Graph Adversarial Attack via Cooperative Homophilous Augmentation\",\"authors\":\"Zhihao Zhu, Chenwang Wu, Mingyang Zhou, Hao Liao, DefuLian, Enhong Chen\",\"doi\":\"10.48550/arXiv.2211.08068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies show that Graph Neural Networks(GNNs) are vulnerable and easily fooled by small perturbations, which has raised considerable concerns for adapting GNNs in various safety-critical applications. In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack(GIA), in which the adversary poisons the graph by injecting fake nodes instead of modifying existing structures or node attributes. Inspired by findings that the adversarial attacks are related to the increased heterophily on perturbed graphs (the adversary tends to connect dissimilar nodes), we propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model. Specifically, the model generates pseudo-labels for unlabeled nodes in each round of training to reduce heterophilous edges of nodes with distinct labels. The cleaner graph is fed back to the model, producing more informative pseudo-labels. In such an iterative manner, model robustness is then promisingly enhanced. We present the theoretical analysis of the effect of homophilous augmentation and provide the guarantee of the proposal's validity. Experimental results empirically demonstrate the effectiveness of CHAGNN in comparison with recent state-of-the-art defense methods on diverse real-world datasets.\",\"PeriodicalId\":74091,\"journal\":{\"name\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.08068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.08068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近的研究表明,图神经网络(gnn)是脆弱的,很容易被小的扰动所愚弄,这引起了人们对在各种安全关键应用中调整gnn的相当大的关注。在这项工作中,我们专注于新兴但关键的攻击,即图注入攻击(GIA),其中攻击者通过注入假节点而不是修改现有结构或节点属性来毒害图。研究发现,对抗性攻击与摄动图上的异质性增加有关(攻击者倾向于连接不同的节点),我们通过对图数据和模型的合作同质增强,提出了一种针对GIA的通用防御框架CHAGNN。具体而言,该模型在每轮训练中为未标记的节点生成伪标签,以减少具有不同标签的节点的异缘。更清晰的图被反馈给模型,产生更多信息的伪标签。在这样的迭代方式下,模型鲁棒性得到了很好的增强。本文从理论上分析了同调增的效应,并为该建议的有效性提供了保证。在不同的真实数据集上,实验结果实证地证明了CHAGNN与最近最先进的防御方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resisting Graph Adversarial Attack via Cooperative Homophilous Augmentation
Recent studies show that Graph Neural Networks(GNNs) are vulnerable and easily fooled by small perturbations, which has raised considerable concerns for adapting GNNs in various safety-critical applications. In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack(GIA), in which the adversary poisons the graph by injecting fake nodes instead of modifying existing structures or node attributes. Inspired by findings that the adversarial attacks are related to the increased heterophily on perturbed graphs (the adversary tends to connect dissimilar nodes), we propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model. Specifically, the model generates pseudo-labels for unlabeled nodes in each round of training to reduce heterophilous edges of nodes with distinct labels. The cleaner graph is fed back to the model, producing more informative pseudo-labels. In such an iterative manner, model robustness is then promisingly enhanced. We present the theoretical analysis of the effect of homophilous augmentation and provide the guarantee of the proposal's validity. Experimental results empirically demonstrate the effectiveness of CHAGNN in comparison with recent state-of-the-art defense methods on diverse real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Full-disk Deep Learning Model for Solar Flare Prediction using Attribution Methods Offline Reinforcement Learning with On-Policy Q-Function Regularization Visualizing Overlapping Biclusterings and Boolean Matrix Factorizations An Examination of Wearable Sensors and Video Data Capture for Human Exercise Classification Online Network Source Optimization with Graph-Kernel MAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1