{"title":"行列式与代数分支程序","authors":"Abhranil Chatterjee, Mrinal Kumar, Ben lee Volk","doi":"10.48550/arXiv.2308.04599","DOIUrl":null,"url":null,"abstract":"We show that for every homogeneous polynomial of degree $d$, if it has determinantal complexity at most $s$, then it can be computed by a homogeneous algebraic branching program (ABP) of size at most $O(d^5s)$. Moreover, we show that for $\\textit{most}$ homogeneous polynomials, the width of the resulting homogeneous ABP is just $s-1$ and the size is at most $O(ds)$. Thus, for constant degree homogeneous polynomials, their determinantal complexity and ABP complexity are within a constant factor of each other and hence, a super-linear lower bound for ABPs for any constant degree polynomial implies a super-linear lower bound on determinantal complexity; this relates two open problems of great interest in algebraic complexity. As of now, super-linear lower bounds for ABPs are known only for polynomials of growing degree, and for determinantal complexity the best lower bounds are larger than the number of variables only by a constant factor. While determinantal complexity and ABP complexity are classically known to be polynomially equivalent, the standard transformation from the former to the latter incurs a polynomial blow up in size in the process, and thus, it was unclear if a super-linear lower bound for ABPs implies a super-linear lower bound on determinantal complexity. In particular, a size preserving transformation from determinantal complexity to ABPs does not appear to have been known prior to this work, even for constant degree polynomials.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"238 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinants vs. Algebraic Branching Programs\",\"authors\":\"Abhranil Chatterjee, Mrinal Kumar, Ben lee Volk\",\"doi\":\"10.48550/arXiv.2308.04599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for every homogeneous polynomial of degree $d$, if it has determinantal complexity at most $s$, then it can be computed by a homogeneous algebraic branching program (ABP) of size at most $O(d^5s)$. Moreover, we show that for $\\\\textit{most}$ homogeneous polynomials, the width of the resulting homogeneous ABP is just $s-1$ and the size is at most $O(ds)$. Thus, for constant degree homogeneous polynomials, their determinantal complexity and ABP complexity are within a constant factor of each other and hence, a super-linear lower bound for ABPs for any constant degree polynomial implies a super-linear lower bound on determinantal complexity; this relates two open problems of great interest in algebraic complexity. As of now, super-linear lower bounds for ABPs are known only for polynomials of growing degree, and for determinantal complexity the best lower bounds are larger than the number of variables only by a constant factor. While determinantal complexity and ABP complexity are classically known to be polynomially equivalent, the standard transformation from the former to the latter incurs a polynomial blow up in size in the process, and thus, it was unclear if a super-linear lower bound for ABPs implies a super-linear lower bound on determinantal complexity. In particular, a size preserving transformation from determinantal complexity to ABPs does not appear to have been known prior to this work, even for constant degree polynomials.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"238 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2308.04599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.04599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that for every homogeneous polynomial of degree $d$, if it has determinantal complexity at most $s$, then it can be computed by a homogeneous algebraic branching program (ABP) of size at most $O(d^5s)$. Moreover, we show that for $\textit{most}$ homogeneous polynomials, the width of the resulting homogeneous ABP is just $s-1$ and the size is at most $O(ds)$. Thus, for constant degree homogeneous polynomials, their determinantal complexity and ABP complexity are within a constant factor of each other and hence, a super-linear lower bound for ABPs for any constant degree polynomial implies a super-linear lower bound on determinantal complexity; this relates two open problems of great interest in algebraic complexity. As of now, super-linear lower bounds for ABPs are known only for polynomials of growing degree, and for determinantal complexity the best lower bounds are larger than the number of variables only by a constant factor. While determinantal complexity and ABP complexity are classically known to be polynomially equivalent, the standard transformation from the former to the latter incurs a polynomial blow up in size in the process, and thus, it was unclear if a super-linear lower bound for ABPs implies a super-linear lower bound on determinantal complexity. In particular, a size preserving transformation from determinantal complexity to ABPs does not appear to have been known prior to this work, even for constant degree polynomials.