木质素衍生高比表面积碳的合成及其电化学性能

Surfaces Pub Date : 2022-04-06 DOI:10.3390/surfaces5020019
Artur M. Suzanowicz, Youngjin Lee, Abigail Schultz, Otavio J. B. J. Marques, Hao Lin, C. Segre, B. Mandal
{"title":"木质素衍生高比表面积碳的合成及其电化学性能","authors":"Artur M. Suzanowicz, Youngjin Lee, Abigail Schultz, Otavio J. B. J. Marques, Hao Lin, C. Segre, B. Mandal","doi":"10.3390/surfaces5020019","DOIUrl":null,"url":null,"abstract":"Activated carbons play an essential role in developing new electrodes for renewable energy devices due to their electrochemical and physical properties. They have been the subject of much research due to their prominent surface areas, porosity, light weight, and excellent conductivity. The performance of electric double-layer capacitors (EDLCs) is highly related to the morphology of porous carbon electrodes, where high surface area and pore size distribution are proportional to capacitance to a significant extent. In this work, we designed and synthesized several activated carbons based on lignin for both supercapacitors and Li-S batteries. Our most favorable synthesized carbon material had a very high specific surface area (1832 m2·g−1) and excellent pore diameter (3.6 nm), delivering a specific capacitance of 131 F·g−1 in our EDLC for the initial cycle. This translates to an energy density of the supercapacitor cell at 55.6 Wh·kg−1. Using this material for Li-S cells, composited with a nickel-rich phosphide and sulfur, showed good retention of soluble lithium polysulfide intermediates by maintaining a specific capacity of 545 mA·h·g−1 for more than 180 cycles at 0.2 C.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and Electrochemical Properties of Lignin-Derived High Surface Area Carbons\",\"authors\":\"Artur M. Suzanowicz, Youngjin Lee, Abigail Schultz, Otavio J. B. J. Marques, Hao Lin, C. Segre, B. Mandal\",\"doi\":\"10.3390/surfaces5020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activated carbons play an essential role in developing new electrodes for renewable energy devices due to their electrochemical and physical properties. They have been the subject of much research due to their prominent surface areas, porosity, light weight, and excellent conductivity. The performance of electric double-layer capacitors (EDLCs) is highly related to the morphology of porous carbon electrodes, where high surface area and pore size distribution are proportional to capacitance to a significant extent. In this work, we designed and synthesized several activated carbons based on lignin for both supercapacitors and Li-S batteries. Our most favorable synthesized carbon material had a very high specific surface area (1832 m2·g−1) and excellent pore diameter (3.6 nm), delivering a specific capacitance of 131 F·g−1 in our EDLC for the initial cycle. This translates to an energy density of the supercapacitor cell at 55.6 Wh·kg−1. Using this material for Li-S cells, composited with a nickel-rich phosphide and sulfur, showed good retention of soluble lithium polysulfide intermediates by maintaining a specific capacity of 545 mA·h·g−1 for more than 180 cycles at 0.2 C.\",\"PeriodicalId\":22129,\"journal\":{\"name\":\"Surfaces\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/surfaces5020019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces5020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

活性炭具有良好的电化学和物理性能,在开发新型可再生能源电极中发挥着重要作用。由于其突出的表面积、孔隙度、重量轻和优异的导电性,它们一直是许多研究的主题。电双层电容器(edlc)的性能与多孔碳电极的形貌密切相关,其高表面积和孔径分布在很大程度上与电容成正比。在这项工作中,我们设计并合成了几种基于木质素的活性炭,用于超级电容器和Li-S电池。我们最有利的合成碳材料具有非常高的比表面积(1832 m2·g−1)和优异的孔径(3.6 nm),在我们的EDLC初始循环中提供131 F·g−1的比电容。这意味着超级电容器电池的能量密度为55.6 Wh·kg−1。用该材料制备的锂硫电池在0.2℃下可保持545 mA·h·g−1以上的比容量,具有良好的可溶多硫锂中间体保留率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Electrochemical Properties of Lignin-Derived High Surface Area Carbons
Activated carbons play an essential role in developing new electrodes for renewable energy devices due to their electrochemical and physical properties. They have been the subject of much research due to their prominent surface areas, porosity, light weight, and excellent conductivity. The performance of electric double-layer capacitors (EDLCs) is highly related to the morphology of porous carbon electrodes, where high surface area and pore size distribution are proportional to capacitance to a significant extent. In this work, we designed and synthesized several activated carbons based on lignin for both supercapacitors and Li-S batteries. Our most favorable synthesized carbon material had a very high specific surface area (1832 m2·g−1) and excellent pore diameter (3.6 nm), delivering a specific capacitance of 131 F·g−1 in our EDLC for the initial cycle. This translates to an energy density of the supercapacitor cell at 55.6 Wh·kg−1. Using this material for Li-S cells, composited with a nickel-rich phosphide and sulfur, showed good retention of soluble lithium polysulfide intermediates by maintaining a specific capacity of 545 mA·h·g−1 for more than 180 cycles at 0.2 C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Applicability of Fluorine Gas Surface Treatment to Control Liquid Sodium Wettability Evaluation of Photocatalytic Hydrogen Evolution in Zr-Doped TiO2 Thin Films Evaluation of the Feasibility of the Prediction of the Surface Morphologiesof AWJ-Milled Pockets by Statistical Methods Based on Multiple Roughness Indicators Formation of Organic Monolayers on KF-Etched Si Surfaces Metal–Perovskite Interfacial Engineering to Boost Activity in Heterogeneous Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1